Peng Li, Lin Yunping, Zhou Guangqiang, et al. Ozone budget in the lower and middle troposphere over North China. J Appl Meteor Sci, 2009, 20(6): 665-672.
Citation: Peng Li, Lin Yunping, Zhou Guangqiang, et al. Ozone budget in the lower and middle troposphere over North China. J Appl Meteor Sci, 2009, 20(6): 665-672.

Ozone Budget in the Lower and Middle Troposphere over North China

  • Received Date: 2009-02-17
  • Rev Recd Date: 2009-10-08
  • Publish Date: 2009-12-31
  • Photochemical reaction, transportation and deposition are the main processes that effect ozone concentrations in troposphere.Quantitative estimation of troposphere ozone budget and the effect of intercontinental transport are very important in order to reveal ozone formation mechanism and the impacts of transport on troposphere ozone over North China. MOZART-2, a global chemical transport model (model of ozone and related tracers, Version 2) is used to assess physical and chemical processes that influence the budget of lower and middle troposphere ozone in North China.Ozone sonde data obtained by TAPTO (The Transport of Air Pollution and Troposphere Ozone over China) field campaign are compared with model results for reference. The comparison shows that MOZART-2 represents the vertical distributions of ozone in the lower and middle troposphere over North China very well, while for the upper troposphere, ozone concentrations are overestimated by the model. Budget analysis indicates that in the lower troposphere over North China, photochemical production (41.5 Tg) contributes about 58.3 % of the total ozone sources, and oxidation of NO by HO2 is the largest contributor especially. The largest consumption process in lower troposphere is dry deposition, accounting for about 43.2 % of the total ozone sinks. Ozone chemical budget varies with seasons notably. It reaches its maximum in summer due to strong photochemical reactions, while the minimum chemical budget occurs in winter because of low temperature and weak reactions.The chemical production of ozone is more than the chemical loss in the lower troposphere in the whole year. But for middle troposphere, chemical loss exceeds chemical production all year except in summer. In summer, ozone precursors in the boundary layer can be transported to upper level of troposphere due to the active convection, and the photochemical reactions of more ozone precursors lead to more ozone production. Net horizontal transport plays an important role in ozone budget in the low and middle troposphere over North China. About 41.6 % ozone in lower troposphere comes from net horizontal transport. As the height increases, wind speed rises, and the influence of net horizontal transport enhances. Nearly 81.5 % ozone in the middle troposphere comes from net horizontal transport. Constrained by simulating ability for sub-grid processes, the model tends to overestimate ozone concentration in upper troposphere and near the tropopause over middle to high northern latitudes. Modeling for sub-grid processes such as stratosphere-troposphere exchange (STE) should be improved to comprehend mechanism of ozone in the whole troposphere in depth.
  • Fig. 1  Comparison of simulated O3 with the observed from ground to 25 km

    Fig. 2  Comparison of simulated O3 with the observed from ground to 12 km

    Fig. 3  Annual circle of O3 photochemical budget in North China of 2004

    (a) lower troposphere, (b) middle troposphere

    Fig. 4  Annual circle of O3 dry deposition in North China of 2004

    Fig. 5  Annual circle of O3 horizontal transport in North China of 2004

    (a) lower troposphere, (b) middle troposphere

    Table  1  Annual O3 budget in the lower and middle troposphere over North China of 2004 (unit:Tg)

  • [1]
    Hoell J M, Davis D D, Liu S C, et al.The Pacific Exploratory Mission-West Phase B: February-March 1994.J Geophys Res, 1997, 102(D23): 28223-28239. doi:  10.1029/97JD02581
    [2]
    Hoell J M, Davis D D, Liu S C, et al.Pacific Exploratory Mission-West A (PEM-West A): September-October 1991. J Geophys Res, 1996, 101(D1): 1641-1653. doi:  10.1029/95JD00622
    [3]
    Huebert B J, Bates T, Russell P B, et al.An overview of ACE-Asia: Strategies for quantifying the relationships between Asian aerosols and their climatic impact.J Geophys Res, 2003, 108(D23): 8633. doi:  10.1029/2003JD003550
    [4]
    Jacob D J, Crawford J H, Kleb M M, et al.Transport and chemical evolution over the Pacific (TRACE-P) aircraft mission: Design, execution, and first results. J Geophys Res, 2003, 108(D20): 9000. doi:  10.1029/2002JD003276
    [5]
    Hudman R C, Jacob D J, Cooper O R, et al.Ozone production in transpacific Asian pollution plumes and implications for ozone air quality in California. J Geophy Res, 2004, 109: D23S11. doi:  10.1029/2003JD003874
    [6]
    Kondo Y, Nakamura K, Chen G, et al. Photochemistry of ozone over the western Pacific from winter to spring.J Geophy Res, 2004, 109: D23S02. doi:  10.1029/2003JD003727
    [7]
    Price H U, Jaffe D A, Cooper O R, et al. Photochemistry, ozone production, and dilution during long-range transport episodes from Eurasia to the northwest United States. J Geophy Res, 2004, 109: D23S14. doi:  10.1029/2003JD004002
    [8]
    丁国安, 孟昭阳, 于海青, 等.北京城区大气边界层空气污染特征观测研究.应用气象学报, 2002, 13(特刊): 82-91. http://www.cnki.com.cn/Article/CJFDTOTAL-YYQX2002S1008.htm
    [9]
    郑向东, 汤洁, 周秀骥, 等.拉萨地区1998年夏季臭氧总量及垂直廓线的观测研究.应用气象学报, 2000, 11(2): 173-179. http://qk.cams.cma.gov.cn/jams/ch/reader/view_abstract.aspx?file_no=20000226&flag=1
    [10]
    郑向东, 周秀骥, 秦瑜, 等.夏季西宁地区的对流层臭氧垂直分布: 臭氧探空与气象探空的观测结果分析.气象学报, 2002, 60(1): 48-52.
    [11]
    王晓云, 潘莉卿, 吕伟林, 等.北京城区冬季空气污染物垂直分布与气象状况的观测分析.应用气象学报, 2001, 12(3): 279-286. http://qk.cams.cma.gov.cn/jams/ch/reader/view_abstract.aspx?file_no=20010339&flag=1
    [12]
    周秀骥.长江三角洲低层大气与生态系统相互作用.北京: 气象出版社, 2004: 130-146.
    [13]
    Ma J Z, Liu H L, Hauglustaine D. Summertime tropospheric ozone over China simulated with a regional chemical transport model 1.Model description and evaluation. J Geophys Res, 2002, 107(D22): 4660. doi:  10.1029/2001JD001354
    [14]
    Ma J Z, Zhou X J, Hauglustaine D. Summertime tropospheric ozone over China simulated with a regional chemical transport model 2.Source contribution and budget.J Geophys Res, 2002, 107(D22): 4612. doi:  10.1029/2001JD001355
    [15]
    Ma J Z, VanAardenne J A. Impact of different emission inventories on simulated tropospheric ozone over China: A regional chemical transportmodel evaluation. Atoms Chem Phys, 2004, 4(4): 877-887. doi:  10.5194/acp-4-877-2004
    [16]
    张恺, 徐大海, 朱蓉, 等. CAPPS多箱模式中光化学模式的嵌套与城市大气臭氧数值预报.应用气象学报, 2005, 16(1): 1-12. http://qk.cams.cma.gov.cn/jams/ch/reader/view_abstract.aspx?file_no=20050102&flag=1
    [17]
    徐祥德, 丁国安, 卞林根.北京城市大气环境污染机理与调控原理.应用气象学报, 2006, 17(6): 815-828. http://qk.cams.cma.gov.cn/jams/ch/reader/view_abstract.aspx?file_no=200606129&flag=1
    [18]
    Newell R E, Evans M J. Seasonal changes in pollutant transport to the North Pacific: The relative importance of Asian and European sources.Geophys Res Let, 2000, 27(16): 2509-2512. doi:  10.1029/2000GL011501
    [19]
    盛裴轩, 毛节泰.东北亚地区污染物输送的等熵轨迹分布——周边国家对中国的影响.气象学报, 1997, 55(5): 588-601. http://www.cnki.com.cn/Article/CJFDTOTAL-QXXB705.006.htm
    [20]
    Zhao C S, Tie X X, Wang G L, et al. Analysis of air quality in eastern China and its interaction with other region of the world. J Atmos Chem, 2006, 55: 189-204. doi:  10.1007/s10874-006-9022-1
    [21]
    Tie X X, Granier C, Massie S, et al.Chemical characterizations of air pollution in eastern China and the eastern United Sates. Atmos Environ, 2006, 40: 2607-2625. doi:  10.1016/j.atmosenv.2005.11.059
    [22]
    Hao W M, Liu M H. Spatial and temporal distribution of tropical biomass burning. Global Biogeochem Cycles, 1994, 8: 495-503. doi:  10.1029/94GB02086
    [23]
    Muller J F.Geographical distribution and seasonal variation of surface emissions and deposition veocities of atmospheric trace gases. J Geophys Res, 1992, 97: 3787-3804. doi:  10.1029/91JD02757
    [24]
    Peng L, Zhao C S, Lin Y P, et al.Analysis of carbon monoxide budget in north China. Chemosphere, 2006, 66: 1383-1389. http://www.sciencedirect.com/science/article/pii/S0045653506012720
    [25]
    Horowitz L, Walters S, Mauzerall D L, et al. A global simulation of tropospheric ozone and related tracers: Description and evaluation of MOZART, Version 2.J Geophys Res, 2003, 108(D24): 4783. doi:  10.1029/2002JD002853/abstract
    [26]
    Frost G J, Trainer M, Allwine G, et al.Photochemical ozone production in the rural south eastern United States during the 1990 Rural Oxidants in the Southern Environment (ROSE) program. J Geophys Res, 1998, 103(D17): 22491-22508. doi:  10.1029/98JD00881
    [27]
    Bethan S, Vaughan G, Gerbig C, et al. Chemical air mass air mass differences near fronts.J Geophys Res, 1998, 103 (D11): 13413-13434. doi:  10.1029/98JD00535
    [28]
    Dickerson R R, Huffmann G J, Luke W T, et al.Thunderstorms: An inmportant mechanism in the transport of air pollutants. Science, 1987, 235: 460-465. doi:  10.1126/science.235.4787.460
    [29]
    Zanis P, Monks P S, Schuepbach E, et al.The role of in situ photochemistry in the control of ozone during spring at the Jungfraujoch-comparison of model results with measurements. J Atmos Chem, 2000, 37: 1-27. doi:  10.1023/A:1006349926926
    [30]
    O'Connor F M, Law K S, Pyle A, et al.Tropospheric ozone budget: Regional and global calculations.Atmos Chem Phys Discuss, 2004, 4: 991-1036. doi:  10.5194/acpd-4-991-2004
    [31]
    Fuentes J D, Gillespie T J, Denhartog G, et al. Ozone deposition onto a deciduous forest during dry and wet conditions. Agr Forest Meteorol, 1992, 62: 1-18 doi:  10.1016/0168-1923(92)90002-L
  • 加载中
  • -->

Catalog

    Figures(5)  / Tables(1)

    Article views (4424) PDF downloads(1443) Cited by()
    • Received : 2009-02-17
    • Accepted : 2009-10-08
    • Published : 2009-12-31

    /

    DownLoad:  Full-Size Img  PowerPoint