Citation: | Huang Xiaogang, Fei Jianfang, Chen Peiyan. A neural network approach to predict tropical cyclone intensity. J Appl Meteor Sci, 2009, 20(6): 699-705. |
Table 1 The maximum intensity for super typhoon at different forecast periods
Table 2 Average absolute prediction error for 12, 24, 36, 48, 72 hours of the tropical cyclone sample
[1] |
Neumann C J. An Alternate to the Hurran Tropical Cyclone Forecast System. NOAA Tech Memo NWS SR-62, 1972.
|
[2] |
Pike A C. Geopotential heights and thicknesses as predictors of Atlantic tropical cyclone motion and intensity. Mon Wea Rev, 1985, 113: 931-939. doi: 10.1175/1520-0493(1985)113<0931:GHATAP>2.0.CO;2
|
[3] |
Kurihara Y, Bender M A, Tuleya R E, et al. Improvements in the GFDL hurricane prediction system. Mon Wea Rev, 1995, 123: 2791-2801. doi: 10.1175/1520-0493(1995)123<2791:IITGHP>2.0.CO;2
|
[4] |
王诗文.国家气象中心台风数值模式的改进及其应用试验. 应用气象学报, 1999, 10(3): 347-353. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=19990384&flag=1
|
[5] |
DeMaria M, Mainelli M, Shay L K, et al. Further improvements to the Statistical Hurricane Intensity Prediction Scheme (SHIPS). Wea Forecasting, 2005, 20 :531-543. doi: 10.1175/WAF862.1
|
[6] |
DeMaria M. Statistical Tropical Cyclone Intensity Forecast Improvements Using GOES And Aircraft Reconnaissance Data. 27th Conference on Hurricanes and Tropical Meteorology, 2006. https://www.researchgate.net/publication/290741215_Statistical_tropical_cyclone_intensity_forecast_improvements_using_goes_and_aircraft_reconnaissance_data
|
[7] |
Rhome J R. On the Calculation of Vertical Shear : An Operational Perspective. 27th Conference on Hurricanes and Tropical Meteorology, 2006. https://ams.confex.com/ams/pdfpapers/108724.pdf
|
[8] |
金龙.神经网络气象预报建模理论方法与应用.北京: 气象出版社, 2004.
|
[9] |
Baik J, Hwang H. Tropical cyclone intensity prediction using regression method and neural network. J Meteor Soc Japan, 1998, 76 :711-717. http://cat.inist.fr/?aModele=afficheN&cpsidt=1662148
|
[10] |
McGauley M G. Hurricane Intensity Forecasting with Neural Networks. http://rsmas.miami.edu/divs/mpo/AboutMPO/Seminars/2004/0405_McGauley_Abstract.pdf http://rsmas.miami.edu/divs/mpo/AboutMPO/Seminars/2004/0405_McGauley_Abstract.pdf
|
[11] |
Anthony V C. A Neural Network Approach to Predict Hurricane Intensity in the North Atlantic Basin. University of Puerto Rico, 2004. http://citeseerx.ist.psu.edu/showciting?cid=6512854
|
[12] |
钮学新.热带气旋动力学.北京:气象出版社, 1992.
|
[13] |
Smyth P, Ide K, Ghil M. Multiple regimes in northern hemisphere height fields via mixture model clustering. J Atmos Sci, 1999, 56 :3704-3723. doi: 10.1175/1520-0469(1999)056<3704:MRINHH>2.0.CO;2
|
[14] | |
[15] | |
[16] |
黄嘉佑.气象统计分析与预报方法.北京:气象出版社, 2000.
|
[17] |
Ramage C S. Hurricane development. J Meteor, 1959, 16 : 227-237. doi: 10.1175/1520-0469(1959)016<0227:HD>2.0.CO;2
|
[18] |
Merrill R T. Environmental influences on hurricane intensification. J Atmos Sci, 1988, 45 : 1678-1687. doi: 10.1175/1520-0469(1988)045<1678:EIOHI>2.0.CO;2
|
[19] |
Christopher S V, Leslie L M. The basic relationship between tropical cyclone intensity and the depth of environmental steering layer in the Australian region. Wea Forecasting, 1991, 6 : 244-253. doi: 10.1175/1520-0434(1991)006<0244:TBRBTC>2.0.CO;2
|
[20] |
DeMaria M. The effect of vertical shear on tropical cycloneintensity change. J Atmos Sci, 1996, 53 : 2076-2087. doi: 10.1175/1520-0469(1996)053<2076:TEOVSO>2.0.CO;2
|