Yin Shuiqing, Zhao Shanshan, Wang Zunya, et al. Characteristic analysis of ice accumulation on transmission lines and simulation based on ANN model over China. J Appl Meteor Sci, 2009, 20(6): 722-728.
Citation: Yin Shuiqing, Zhao Shanshan, Wang Zunya, et al. Characteristic analysis of ice accumulation on transmission lines and simulation based on ANN model over China. J Appl Meteor Sci, 2009, 20(6): 722-728.

Characteristic Analysis of Ice Accumulation on Transmission Lines and Simulation Based on ANN Model over China

  • Received Date: 2009-02-10
  • Rev Recd Date: 2016-01-13
  • Publish Date: 2009-12-31
  • An extreme frozen ice and snow disaster brought severe losses in early 2008 to China. A large number of overhead transmission lines are destroyed seriously during this event. It is critical to investig ate the characteristics of ice accumulation and develop appropriate models to estimate transmission line icing in China.Using the observation data of ice accumulation on transmission lines and meteorological data collected from over 600 meteorological stations of China, the characteristics of ice accumulation are analyzed and an ANN model for predicting ice accumulation depth grades is developed. The results mainly include four aspects. First, the area with ice accumulation extremes over 10 mm is mainly located in the southeastern part of Northeastern China, the northeastern part of Inner Mongolia, the middle part of North China, the southern part of Gansu Province and a east-west zone to the south of the Yangtze River. Second, there are 50 stations (1/6 of totalice accumulation observation stations) expe riencing extreme ice accumulation in 2008. Third, trends for yearly maximum of ice accumulation depth and ice accumulation days increase for Huangshan station in Anhui Province and Lushan station in Jiangx iProvince, while decrease for Emeishan station in Sichuan Province and Xifengzhen station in Gansu Province. Finally, an ANN model based on three layer BP network is developed to predict ice accumulation thickness grades. It is used to predict ice accumulation thickness grades in recent 10 years, and the accuracy rate is 81.3%comparing with obser-vation. For 7.5% of the samples, prediction result is one grade higher than observation and for 11.3% it is one to four grades lower. The ANN model underestimates extreme high values seriously, which suggests it needs improving.Besides, the data from weather observation stations might be different from the field surroundings. Nevertheless, in the areas with high risks of freezing hazard, the model can provide information for electricity suppliers to optimize the design of reliable equipments and to take preventive actions avoiding serious damage by ice-snow frozen weather.
  • Fig. 1  The spatial distribution of ice accumulation extremes for each station

    Fig. 2  The spatial distribution of decades when ice accumulations extremes appear

    Fig. 3  Relationship between ice accumulation depths with meteorological parameters cont rolling ice accretion

    (a)daily minimumtemperature, (b)daily relative humidity, (c)daily wind speed, (d)daily rainfall amount

    Fig. 4  Relationship between pairs of meteorological parameters controlling ice accretion

    (yellow, green, blue and red dots represent samples with ice accretion depth of 0 mm, 0-20 mm, 20-40 mm and >40 mm, respectively) (a)daily minimum tempera ture vs daily relative humidity, (b)daily minimum temperature vs daily wind speed, (c)daily minimum tempera ture vs daily rainfall amount, (d)daily relative humidity vs daily wind speed

    Table  1  Statist ics about the stations with ice accretion observation over China

    Table  2  Trend for yearly maximal ice accumulation depth and ice accumulation days

    Table  3  Partial correlation coeff icients between ice accumulation depth and meteorological parameters controlling ice accretion for 4 days including the ice-accretion-depth-observed day and 1-3 days before that

    Table  4  Assessment of ANN model by comparing prediction grades with observation grades

  • [1]
    国家气候中心.2008年初我国南方低温雨雪冰冻灾害及气候分析.北京:气象出版社, 2008:20.
    [2]
    王遵娅, 张强, 陈裕, 等.2008年初我国低温雨雪冰冻灾害的气候特征.气候变化研究进展, 2008, 4(2):63 -67. http://www.cnki.com.cn/Article/CJFDTOTAL-QHBH200802004.htm
    [3]
    Poots G. Ice and Snow Accretion on Structures. Taunton: Research Studies Press, 1996. http://ci.nii.ac.jp/ncid/BA28032517
    [4]
    Mak konen L. Estimation in tensity of atmospheric ice accretion on stationary structures. J Appl Meteor, 1981, 20:595-600. doi:  10.1175/1520-0450(1981)020<0595:EIOAIA>2.0.CO;2
    [5]
    Mak konen L. Modeling of ice accretion on wires. J Climate Appl Meteor, 1984, 23:929 -939. doi:  10.1175/1520-0450%281984%29023<0929%3AMOIAOW>2.0.CO%3B2
    [6]
    Sundin E, M ak konen L. Ice load son a lattice tower estimated by weather station data. J Appl Meteor, 1998, 37:523 -529. http://cat.inist.fr/?aModele=afficheN&cpsidt=2233947
    [7]
    Makkonen L. Models for the growth of rime, glaze, icicles and wet snow on structures. Phil Trans (Series A), 2000, 358:2913 -2939. http://rsta.royalsocietypublishing.org/content/358/1776/2913
    [8]
    罗宁, 文继芬, 赵彩, 等.导线积冰的云雾特征观测研究.应用气象学报, 2008, 19(1):91-95. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20080114&flag=1
    [9]
    Lenhard R W. An indirect method for estimating the weight of glaze on wires. Bull Amer Met Soc, 1995, 36:1 -5.
    [10]
    Makkonen L. Modeling Power Line Icing in Freezing Precipi-tation.7th International Workshop on Atmospheric Icing of Stractures, Chicoutimi, Canada, 1996:195 -200. http://www.sciencedirect.com/science/article/pii/S0169809597000562
    [11]
    McComber P, Draez J, Laflamme J. Icing rate estimation of atmospheric cable icing. IntJ Off shore Polar Eng, 1995, 5(2):75 -92. https://www.onepetro.org/journal-paper/ISOPE-95-05-1-043
    [12]
    Farzaneh M, Savadjiev K. Statistical analysis of field data for precipitation icing accretion on overhead power lines. IEEE Trans Power Deliv, 2005, 20(2):1080-1087. doi:  10.1109/TPWRD.2004.838518
    [13]
    Ohta H, Saitoh K, Kanemaru K, et al. Application of Disaster Warning System Due to Snow Accretion on Power Lines Using Neural Networks.7th International Works hop on At-mospheric Icing of Structures, Chicoutimi, Canada, 1996:l49-154.
    [14]
    McComber P, De Lafontaine J, Laflamme J. A Neural System to Estimate Transmission Line Icing. 8th International Workshop on Atmospheric Icing of Stractures, Rey kjavik, Iceland, 1998:101 -106.
    [15]
    Larouche E, Rouat J, Bouchard G, et al. Exploration of Static and Time Dependent Neural Network Technique for the Predic-tion of Ice Accretion on Overhead Line Conductors.9th Interna-tional Workshop on Atmospheric Icing of Structures. Chester, United Kingdom, Session 2, 2000: 8.
    [16]
    Maralbashi -Zamini S.Developing Neural Network Models toPredict Ice Accretion Type and Rate on Overhead Transmission Lines, 2007 DOI:10.1522/030012635
    [17]
    唐熠.一次雨淞天气与一次飘雪天气过程形势异同分析.广西气象, 2003, 24(3):21 -22;45. http://www.cnki.com.cn/Article/CJFDTOTAL-GXQX200303007.htm
    [18]
    吕胜辉, 王积国, 邱菊.天津机场地区冻雨天气分析.气象科技, 2004, 32(6):456 -460. http://www.cnki.com.cn/Article/CJFDTOTAL-QXKJ200406014.htm
    [19]
    谭冠日.电线积冰若干小气候特征的探讨.气象学报, 1982, 40(1):13 -23. http://www.cnki.com.cn/Article/CJFDTOTAL-QXXB198201001.htm
    [20]
    王守礼.云南高海拔地区电线覆冰问题研究.昆明:云南科技出版社, 1993.
    [21]
    蒋兴良, 孙才新, 顾乐观, 等.三峡地区导线覆冰的特性及雾凇覆冰模型.重庆大学学报 (自然科学版), 1998, (2): 18 -21. http://www.cnki.com.cn/Article/CJFDTOTAL-FIVE802.002.htm
    [22]
    刘和云, 周迪, 付俊萍, 等.导线雨淞覆冰预测简单模型的研究.中国电机工程学报, 2001, 21(4):45 -48. http://www.cnki.com.cn/Article/CJFDTOTAL-ZGDC200104009.htm
    [23]
    苑吉河, 蒋兴良, 易辉, 等.输电线路导线覆冰的国内外研究现状.高电压技术, 2004, 30(1) :8 -11. http://www.cnki.com.cn/Article/CJFDTOTAL-GDYJ200401002.htm
    [24]
    张国庆, 张加昆, 祁栋林, 等.青海东部电线积冰的初步观测分析.应用气象学报, 2006, 17(4): 508-510. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20060488&flag=1
    [25]
    吴素良, 蔡新玲, 何晓嫒, 等.陕西省电线积冰特征.应用气象学报, 2009, 20(2):247 -251. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20090215&flag=1
    [26]
    西南电力设计院.电力工程气象勘测技术规程.北京:中国电力出版社, 2002.
    [27]
    李双成, 吴绍洪, 戴尔阜.生态系统响应气候变化脆弱性的人工神经网络模型评价.生态学报, 2005, (3): 621-626. http://www.cnki.com.cn/Article/CJFDTOTAL-STXB200503031.htm
    [28]
    龙立宏, 胡毅, 李景禄, 等.输电线路冰害事故统计分析及防治措施研究.电力设备, 2006, 7(12):26 -28. http://www.cnki.com.cn/Article/CJFDTOTAL-DLSB200612008.htm
  • 加载中
  • -->

Catalog

    Figures(4)  / Tables(4)

    Article views (4051) PDF downloads(2451) Cited by()
    • Received : 2009-02-10
    • Accepted : 2016-01-13
    • Published : 2009-12-31

    /

    DownLoad:  Full-Size Img  PowerPoint