Chen Jiaona, Li Guoping, Huang Wenshi, et al. The evolution features of precipitable water vapor derived from ground-based GPS during autumn rain weather process in West China. J Appl Meteor Sci, 2009, 20(6): 753-760.
Citation: Chen Jiaona, Li Guoping, Huang Wenshi, et al. The evolution features of precipitable water vapor derived from ground-based GPS during autumn rain weather process in West China. J Appl Meteor Sci, 2009, 20(6): 753-760.

The Evolution Features of Precipitable Water Vapor Derived from Ground-based GPS During Autumn Rain Weather Process in West China

  • Received Date: 2008-08-25
  • Rev Recd Date: 2009-06-18
  • Publish Date: 2009-12-31
  • Based on the principle of deriving precipitable water vapor with ground-based GPS, the estimates of total zenith delay are calculated using ZTD data from the ground-based GPS network in Chengdu Plain during the period of September to November 2007. Precipitable water vapor (PWV) derived from GPS are obtained at 30-minute interval combining meteorological data from automatic weather stations. The autumn rain is classified as showery rain and continuous precipitation in Chengdu Plain, and the relationship between GPS-PWV and autumn rain is analyzed. It shows that precipitation always happens in high value phase of water vapor, so the high precipitable water vapor is necessary for rain in most cases. Precipitation happen when the PWV anomaly is positive, and the PWV anomaly is always higher than 1 when a rainstorm occurs. The variation range of showery in autumn is large. The GPS-PWV always increases 12 hours before the precipitation. When GPS-PWV is higher than the base value of the month or acutely increases in the adjacent time, a shower is likely to occur. High GPS-PWV level and weak updrafts just lead to small rain. But the increasing of precipitable water with strong ascending motion and the decreasing of temperature always causes shower. During continuous precipitation in autumn in Chengdu Plain, the accu-mulation of water vapor is very important, strong precipitation often happens when water vapor rises once again. If the precipitable water vapor maintains the high level, it may rain within 12 hours. If the water vapor falls to the base value of the month then rise to above that within 12 hours, it indicates the beginning of another phase of precipitation. GPS-PWV variation range, extremum level and duration are different in different rain process. These results may be referential for applying precipiatable production derived from ground-based GPS network in precipitation forecast.
  • Fig. 1  The relation of PWV* and precipitation in autumn over Chengdu Plain

    Fig. 2  The time series of GPS-PWV (a) and PWV* (b) compared with precipitation from 1 to 2 September 2007 at Chengdu station

    Fig. 3  Curve of GPS-PWV and precipitation from 15 to 16 September 2007 at Longquanyi station (a) and from 18 to 19 November at Dayi station (b)

    Fig. 4  The relationship of PWV* with precipitation from 15 to 16 September 2007 at Long quanyi station (a) and from 18 to 19 November 2007 at Dayi station (b)

    Fig. 5  The time series of GPS-PWV, precipitation and temperature-dew point spread from 5 to 13 September 2007 and the curve of 9 moving averag e of GPS-PWV (a) Jintang, (b) Pujiang

    Table  1  The distribution of monthly precipitation hour and precipitable water vapor during July-September of 2007 in Chengdu Plain

    Table  2  The variation features of GPS-PWV during showery precipitation

  • [1]
    李延兴, 徐宝祥, 胡新康, 等.应用地基GPS技术遥感大气柱水汽量的实验研究.应用气象学报, 2001, 12(1):61-68.
    [2]
    袁野, 王成章, 蒋年冲, 等.不同云天条件下水汽含量特征及其变化分析.气象科学, 2005, 31(4):394-398. http://www.cnki.com.cn/Article/CJFDTOTAL-QXKX200504008.htm
    [3]
    刘旭春, 王艳秋, 张正禄.利用GPS技术遥感哈尔滨地区大气可降水量的分析.测绘通报, 2006, 14(4):10-16. http://www.cnki.com.cn/Article/CJFDTOTAL-CHTB200604006.htm
    [4]
    陈小雷, 景华, 仝美然, 等.地基GPS遥测大气可降水量在天气分析诊断中的应用.气象, 2007, 33(6):19-24. http://www.cnki.com.cn/Article/CJFDTOTAL-QXXX200706002.htm
    [5]
    曹云昌, 方宗义, 夏青.GPS遥感的大气可降水量与局地降水关系的初步分析.应用气象学报, 2005, 16(1):54-59. http://qk.cams.cma.gov.cn/jams/ch/reader/view_abstract.aspx?file_no=20050107&flag=1
    [6]
    姚建群, 丁金彩, 王坚捍, 等.用GPS可降水量资料对一次大-暴雨过程的分析.气象, 2005, 31(4):48-52. http://www.cnki.com.cn/Article/CJFDTOTAL-QXXX200504011.htm
    [7]
    Manabu Kanda.GPS Meteorology:Ground-based and Space-Borne Application∥Proceedings of GPS Meteorology.Tsukuba, Japan, 2003:3-12.
    [8]
    李国平, 黄丁发.GPS遥感区域大气水汽总量研究回顾与展望.气象科学, 2004, 32(4):201-205. http://www.cnki.com.cn/Article/CJFDTOTAL-QXKJ200404000.htm
    [9]
    何平, 徐宝祥, 胡新康, 等.地基GPS反演大气水汽总量的初步试验.应用气象学报, 2002, 13(2):179-183. http://qk.cams.cma.gov.cn/jams/ch/reader/view_abstract.aspx?file_no=20020222&flag=1
    [10]
    杨红梅, 何平, 徐宝祥.用GPS资料分析华南暴雨的水汽特征.气象, 2002, 28(5):10-14. http://www.cnki.com.cn/Article/CJFDTOTAL-QXXX200205003.htm
    [11]
    李国平, 黄丁发, 刘碧全.成都地区地基GPS观测网遥感大气可降水量的处分试验.武汉大学学报(信息科学版), 2006, 31(12):1086-1089. http://www.cnki.com.cn/Article/CJFDTOTAL-WHCH200612012.htm
    [12]
    谷晓平, 王长耀, 蒋国华.地基GPS遥感大气水汽含量及在气象上的应用.气象科学, 2005, 25(5):543-550. http://www.cnki.com.cn/Article/CJFDTOTAL-QXKX200505013.htm
    [13]
    梁丰, 李成才, 王迎春, 等.应用区域地基全球定位系统观测分析北京地区大气总水汽量.大气科学, 2003, 27(2):236-243. http://www.cnki.com.cn/Article/CJFDTOTAL-DQXK200302009.htm
    [14]
    Saastamoinen J.Atmospheric correction for the troposphereand stratosphere in radio ranging of satellites.The Use ofArtificial Satellites for Geodesy Monogr, 1972, 15:247-251. doi:  10.1029/GM015p0247/summary
    [15]
    Davis J L, Herring T A, Shaprio I I, et al.Geodesy by radiointer-ferometry:Effects of atmospheric modeling errors ones timates of baseline length.Radio Sci, 1985, 20:1593-1607. doi:  10.1029/RS020i006p01593
    [16]
    郭洁, 李国平, 黄丁发.基于40年探空资料的川渝地区对流层加权平均温度及其局地建模.武汉大学学报(信息科学版), 2008, 33(增刊):43-46.
  • 加载中
  • -->

Catalog

    Figures(5)  / Tables(2)

    Article views (3819) PDF downloads(1641) Cited by()
    • Received : 2008-08-25
    • Accepted : 2009-06-18
    • Published : 2009-12-31

    /

    DownLoad:  Full-Size Img  PowerPoint