Peng Xindong, Li Xingliang. Advances in the numerical method and technology of multi scale numerical prediction. J Appl Meteor Sci, 2010, 21(2): 129-138.
Citation: Peng Xindong, Li Xingliang. Advances in the numerical method and technology of multi scale numerical prediction. J Appl Meteor Sci, 2010, 21(2): 129-138.

Advances in the Numerical Method and Technology of Multi scale Numerical Prediction

  • Received Date: 2009-07-29
  • Rev Recd Date: 2010-02-03
  • Publish Date: 2010-04-30
  • With the advances of computer and computational technique, multi scale multi task numerical model is being developed for fine prediction in a global scope. The difference between a general circulation model and a mesoscale model becomes unclear except for the forcing arrangement, and a global model tends to be used for severe storm prediction and study of mesoscale convective systems. Development of a multi scale model can be stated in improving the universality of model dynamics, discretion scheme, computational algorithm and physics, and the key issue is improving the multi scale properties of each parts. It calls for no approximation to the dynamics of the real atmosphere and detailed arrangement of the topography. Numerical schemes and the computational algorithm should be flexible, accurate and stable, so that can be used to various grid spacing systems. Considering the spherical mesh, grid structure and dynamical feature of discretion, the quasi uniform mesh with fine numerical dispersion feature is preferred in the recent development of numerical models. Reduced grid, cubed grid, icosahydron grid, Yin Yang grid and Voronoi grid are discussed. In addition to detailed model physics, non hydrostatic model with global and regional configuration and unified frame is the fashion of multi scale model. The vertical coordinate and terrain arrangement are important for proper description of dynamical and thermo dynamical processes. Vertical z coordinate and “shaved cell” topography have boosted the unified model, especially in high resolution case. Besides, numerical method should describe the intrinsic nature of dynamical processes, and provides sub grid information during the temporal integration. Conservation of the main model properties is known as the key factor for long term integration. High performance numerical scheme favors the multi scale application of a model and is of great attraction. The pioneer researches over the world are summarized, which provides reference for the development of the multi scale model system, GRAPES, in China.
  • Fig. 1  SchematicplotsoftheZgrid (a), Rgrid (b) and M grid (c)

    Fig. 2  The fourquasi-uniform spherical grids used for global atmospheric models

    (a) reducedgrid, (b) icosahydrongrid, (c) cubedgrid, (d) Yin-Yanggrid

    Fig. 3  Automatictwo-waynestingtechnology

    Fig. 4  IllustrationsofvariablesonCPgrid (a) andLZgrid (b)

    Fig. 5  Illustrations of step model topography (a) and shaved-cell topography (b)

    (dashed line shows true terrain, shaded area shows modal terrain)

    Fig. 6  Two-dimensional (a) and quasi-three-dimensional (b) super parameterization with cloud-resolving model with in acoarse cell

    (the scale with a cell shows cloud resolving grid size)

  • [1]
    Richardson L F,Weather Prediction by Numerical Process,Lon-don:Cambridge University Press,1922.
    [2]
    Charney J G,Fiortoft R,von Neumann J,Numerical inte-gration of the barotropic vorticity equation,Tellus,1950,2:237-254. doi:  10.1111/tus.1950.2.issue-4
    [3]
    丑纪范,谢志辉,王式功,建立6-15天数值天气预报业务系统的另类途径,军事气象水文,2006,12:4-9.
    [4]
    丑纪范,天气数值预报中使用过去资料的问题,中国科学a辑,1974,17(6):635-644.
    [5]
    邱崇践,丑纪范,改进数值天气预报的一个新途径,中国科学b辑,1987,17(8):903-910.
    [6]
    Ohfuchi W,Nakamura H,Yoshioka M,10-km mesh meso-scale resolving simulations of the global atmosphere on the Earth Simulater-Preliminary outcomes of AFES(AGCM for the Earth Simulator),J Earth Simulator,2004,1:5-31.
    [7]
    张人禾,沈学顺,中国国家级新一代业务数值预报系统GRAPES的发展,科学通报,2008,53(20):2393-2395. http://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200820001.htm
    [8]
    陈德辉,沈学顺.新-代数值预报系统GRAPES的研究进展,应用气象学报,2006,17(6):773-777. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=200606125&flag=1
    [9]
    胡江林,沈学顺,张红亮,GRAPES模式动力框架的长期积分特征,应用气象学报,2007,18(3):276-284. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20070349&flag=1
    [10]
    Arakawa A,Lamb V R,Computational design of the basic dynamical processes of the UCLA general circulation model,Methods in Computational Physics,1977,17:173-265.
    [11]
    Randall D A,Geostrophic adjustment and the finite-difference shallow-water equations,Monthly Weather Review,1994,122:1371-1377. doi:  10.1175/1520-0493(1994)122<1371:GAATFD>2.0.CO;2
    [12]
    McGregor J L,Geostrophic adjustment foe reversibly stag-gered grids,Monthly Weather Review,2005,133:1119-1128. doi:  10.1175/MWR2908.1
    [13]
    Xiao F,Peng X,Shen X,A finite-volume grid using multi-moments for geostrophic adjustment,Monthly Weather Review,2006,134:2515-2526. doi:  10.1175/MWR3197.1
    [14]
    Williamson D L,The evolution of dynamical cores for global atmospheric models,Journal of the Meteorological Society of Japan,2007,85B:241-269. doi:  10.2151/jmsj.85B.241
    [15]
    Peng X,Xiao F,Takahashi K,Conservative constraint for a quasi-uniform overset grid on the sphere,Quarterly Journal of the Royal Meteorological Society,2006,132:979-996. doi:  10.1256/qj.05.18
    [16]
    Chaney J G,Phillips N A,Numerical integration of the qua-si-geostrophic equations for barotropic and simple baroclinic flows,Journal of Meteorology,1953,10:71-99. doi:  10.1175/1520-0469(1953)010<0071:NIOTQG>2.0.CO;2
    [17]
    Lorenz E N,Energy and numerical weather prediction,Tel-lus,1960,12:364-373.
    [18]
    Tokioka T,Some consideration on vertical differencing,Journal of the Meteorological Society of Japan,1978,56:89-111.
    [19]
    Hollingsworth A,A Spurious Mode in"Lorenz" Arrangement of Φ and T Which Does not Exist in the"Charney-Phillips"Ar-rangement,ECMWF Tech Memo,1995,211:1-12.
    [20]
    Arakawa A,Konor C S,Vertical differencing of the primitive equations based on the Charney-Phillips grid in hybrid σp vertical conrdinates,Monthly Weather Review,1996.
    [21]
    Arakawa A,Moorthi S Baroclinic instability in vertically discrete system,Journal of the Atmospheric Sciences,1996,124:511-528.
    [22]
    Arakawa A,Suarez M J,Vertical differencing of the primi-tive equations in Sigma coordinates,Monthly Weather Review,1983,111:34-45. doi:  10.1175/1520-0493(1983)111<0034:VDOTPE>2.0.CO;2
    [23]
    陈德辉,杨学胜,张红亮,多尺度非静力通用模式框架的设计策略,应用气象学报,2003,14(4):452-461. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20030456&flag=1
    [24]
    薛纪善,陈德辉,数值预报系统GRAPES的科学设计与应用,北京:科学出版社,2008:1-383.
    [25]
    Thompson J F,Warsi Z,Mastin C,Numerical Grid Genera-tion:Foundations and Applications,North-Holland:Elsevier Science Publishing Company,1985.
    [26]
    Mesinger F,Janjic Z,Nickovic S,The step-mountain coordinate:Model description and performance for cases al-pine lee cyciogenesis and foe a case of an Appalachian redevel-opment,Monthly Weather Review,1988,116:1493-1518. doi:  10.1175/1520-0493(1988)116<1493:TSMCMD>2.0.CO;2
    [27]
    Gallus W,Klemp J,Behavior of flow over step orography,Monthly Weather Review,2000,128:1153-1164. doi:  10.1175/1520-0493(2000)128<1153:BOFOSO>2.0.CO;2
    [28]
    Yamazaki H,Satomura T,Vertically combined shaved cell method in a z-coordinate nonhydrostatic atmospheric model,Atmospheric Science Letters,2008,DOI: 10.1002/asl.187.
    [29]
    Saito K,Ishida J,Aranami K,Nonhydrostatic atmos-pheric models and operational development at JMA,J Meteo-ro Soc Japan,2007,85B:271-304.
    [30]
    Erbes G,A,semi-Lagrangian method of Characteristics for the shallow-water equations,Monthly Weather Review,1993,121:3443-3452. doi:  10.1175/1520-0493(1993)121<3443:ASLMOC>2.0.CO;2
    [31]
    Ogata Y,Yabe T,Multi-dimensional semi-Lagrangian char-acteristic approach to the shallow water equations by CIP method,International J Comput Eng Sci,2004,5:699-730. doi:  10.1142/S1465876304002642
    [32]
    Peng X,Chang Y,Li X,Application of the character-istic CIP method to shallow water model on sphere,Adv At-mos Sci,2010,27,doi: 10.1007/s00376-009-9148-6.
    [33]
    Yabe T,Tanaka R,Nakamura T,An exactly conser-vative semi-Lagrangian scheme(CIP-CSL)in one dimension,Mon Wea Rea,2001,129:332-344. doi:  10.1175/1520-0493(2001)129<0332:AECSLS>2.0.CO;2
    [34]
    陈峰峰,王光辉,沈学顺,Cascade插值方法在GRAPES 模式中的应用,应用气象学报,2009,20(2):164-170. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20090205&flag=1
    [35]
    Randall D,Khairoutdinov M,Arakawa A,Breaking the cloud parameterization deadlock,Bull Amer Metero Soc,2003,84:1547-1564. doi:  10.1175/BAMS-84-11-1547
  • 加载中
  • -->

Catalog

    Figures(6)

    Article views (4278) PDF downloads(4444) Cited by()
    • Received : 2009-07-29
    • Accepted : 2010-02-03
    • Published : 2010-04-30

    /

    DownLoad:  Full-Size Img  PowerPoint