Deng Guo, Gong Jiandong, Deng Liantang, et al. Development of mesoscale ensemble prediction system at National Meteorological Center. J Appl Meteor Sci, 2010, 21(5): 513-523.
Citation: Deng Guo, Gong Jiandong, Deng Liantang, et al. Development of mesoscale ensemble prediction system at National Meteorological Center. J Appl Meteor Sci, 2010, 21(5): 513-523.

Development of Mesoscale Ensemble Prediction System at National Meteorological Center

  • Received Date: 2010-02-11
  • Rev Recd Date: 2010-07-29
  • Publish Date: 2010-10-31
  • To improve short-range weather forecast predictability of high impact weather process, a set of national-level mesoscale ensemble prediction system (MEPS) is developed at National Meteorological Center (NMC). The theory to set up an ensemble prediction system lies in the following facts: There are no perfect forecast models, and atmosphere is a chaotic dynamical system, so any small error in the initial condition will lead to growing errors in the forecast, eventually leading to a total loss of any predictive information. The MEPS at NMC takes advantage of achievements at high resolution deterministic mesoscale prediction model, data assimilation system as well as experience from development of global ensemble prediction system. The error growth features for mesoscale model forecast within China area is explored and it is found that most of the convective-scale weather system develops in weak baroclinic environment and the quick growth errors resulted from baroclinic instability. Considering characteristics of the circulation regime, season and geographical domain, the initial perturbation technique of breeding method is adopted to perturb the initial fields. Furthermore, to reflect uncertainties within physical process as well as systematic errors within mesoscale model, many options of microphysics, convective cumulus parameterization, boundary layer schemes, land surface process schemes and combinations in the model are tested for a certain period to evaluate the performance of different schemes. The experiment indicates that physical process perturbation has equal or even greater impacts on spread of ensemble prediction comparing with initial condition perturbation. Therefore, assembling of different microphysics schemes, cumulus parameterization, and planetary boundary layer processes is applied to build a multi-initial condition, multi physics ensemble system. The initial conditions and lateral boundary conditions are obtained from global ensemble system at NMC and trickily rescaled during model integration process. To reduce systematic bias in ensemble forecasts, an adaptive Kalman Filtering algorithm is applied as bias correction method and the results is inspiring. Ensemble forecast products include ensemble averages, spread and probability of multiple elements (wind, temperature, humidity, geopotential height, rainfall, etc.) in multiple layers are produced and performance of the ensemble system is evaluated. To evaluate the performance of NMC's regional mesoscale ensemble prediction system, different ensemble verification methods is used to estimate and compare 6 mesoscale ensemble prediction systems within a common forecasting configuration during the WMO/WWRP Beijing 2008 Olympics Mesoscale Ensemble Research and Development Project. Results indicate that the overall predictability of mesoscale ensemble prediction system at NMC is overall comparable to the international participants. The MEPS is still not good enough for fixed site and time-specific forecasts, but it demonstrates good ability to capture the high impact weather event and will play a role in everyday forecast.
  • Fig. 1  Schematic illustration on breeding of growth modes initial perturbation technique

    Fig. 2  Analysis field of 2-meter temperature at 00:00 12 June 2009 (a) with corresponding temperature growth mode (b)

    Fig. 3  Distribution of mask over China in March (unit:J)

    Fig. 4  Verification of different rainfall forecast

    Fig. 5  Verification of rainfall forecast for different microphysics options

    Fig. 6  Comparison of 2-metertemperature absolute error with in the lead time of 36 hours between WRF Version 2.1 and WRF Version 2.2

    Fig. 7  Flow of WRF based on regional ensemble prediction system of NMC

    Fig. 8  Effect of bias correction for 2-meter temperature forecast with the lead time of 30 hours during15—24 August 2007

    Fig. 9  Brier Scores for verification of 6-hour accumulated rainfall against observation (a) and improvement rate at NMC (b)(quotedfromreference[29])

    Fig. 10  Ensemble verification of B08RDP participant systems for mean TS of rainfall (a) androot-mean-square error of 2-metertemperature (b)

    Fig. 11  ROC diagrams for 2-metertemperature for B08RDP systems with the initial time of 12:00 and the lead time of 18 hours

    Table  1  Classification for rainfall verifications

    Table  2  Perturbation schemes on multi-physics

    Table  3  List of two-state classification

  • [1]
    廖洞贤.大气数值模式的设计.北京:气象出版社,1999.
    [2]
    丑纪范,郜吉东.长期数值天气预报.北京:气象出版社,1995.
    [3]
    Eugenia Kalnay.Atmospheric Modeling,Data assimilation and Predictability.Cambridge:Cambridge University Press,2003.
    [4]
    陈德辉,薛纪善.数值天气预报业务模式现状与展望.气象学报,2004,62(5):623-633. http://www.cnki.com.cn/Article/CJFDTOTAL-QXXB200405009.htm
    [5]
    Leith C E.Theoretical skill of Monte Carlo forecasts.Mon Wea Rev,1974,102:409-418. doi:  10.1175/1520-0493(1974)102<0409:TSOMCF>2.0.CO;2
    [6]
    Hoffman R N,Kalnay E.Lagged average forecasting.Tellus,1983,35A; 100-118. doi:  10.1111/tela.1983.35A.issue-2
    [7]
    Molteni F,Palmer T N,Buizza R,et al.The ECMWF ensemble prediction system methodology and verification.Quart J Roy Met Soc,1996,122:73-121. doi:  10.1002/(ISSN)1477-870X
    [8]
    Toth Z,Kalnay E.Ensemble forecasting at NMC,the generation of perturbations.Bull Amer Meteor Soc,1993,74:2317-2330. doi:  10.1175/1520-0477(1993)074<2317:EFANTG>2.0.CO;2
    [9]
    Toth Z,Kalnay E.Ensemble forecasting at NCEP and the breeding method.Mon Wea Rev,1997,125:3297-3319. doi:  10.1175/1520-0493(1997)125<3297:EFANAT>2.0.CO;2
    [10]
    Houtekamer P L,Lefaivre L,Derome J,et al.A system simulation approach to ensemble prediction,Mon Wea Rev,1996,124:1225-1242. doi:  10.1175/1520-0493(1996)124<1225:ASSATE>2.0.CO;2
    [11]
    李泽椿,陈德辉.国家气象中心集合数值预报业务系统的发展及应用.应用气象学报,2002,13(1):1-15. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20020101&flag=1
    [12]
    陈静,薛纪善,颜宏.一种新型的中尺度暴雨集合预报初值扰动方法研究.大气科学,2005,29(5):717-726. http://www.cnki.com.cn/Article/CJFDTOTAL-DQXK200505004.htm
    [13]
    陈静,薛纪善,颜宏.华南中尺度暴雨数值预报的不确定性与集合预报试验.气象学报,2003,61(4):432-446. http://www.cnki.com.cn/Article/CJFDTOTAL-QXXB200304004.htm
    [14]
    冯汉中,陈静,何光碧,等.长江上游暴雨短期集合预报系统试验与检验.气象,2006,32(8):12-16. http://www.cnki.com.cn/Article/CJFDTOTAL-QXXX200608001.htm
    [15]
    Gao Shouting,Li Xiaofan,Impacts of initial conditions on cloudresolving model simulations.Adc Atmos Sci,2008,25(5):737-747. doi:  10.1007/s00376-008-0737-6
    [16]
    高守亭,孙建华.北京奥运期间异常天气预测关键技术.高新技术与产业化,2008(9):20-21. http://www.cnki.com.cn/Article/CJFDTOTAL-GKFC200809014.htm
    [17]
    田伟红,庄世宇.ETKF方法在区域集合预报中的初步应用.气象,2008,34(8):35-39. http://www.cnki.com.cn/Article/CJFDTOTAL-QXXX200808006.htm
    [18]
    王晨稀,姚建群.梁旭东.上海区域降水集合预报系统的建立与运行结果的检验.应用气象学报,2007,18(2):173-180. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20070230&flag=1
    [19]
    Duan Yihong,Gong Jiandong,Chen Dehui,et al.A Report on the WWRP Research and Development Project B08RDP to the WWRP Joint Scientific Committee.[2010-01-05] http:// procurement.wmo.int/pges/prog/arep/wwrp/new/documents/Doc3 _2 3_B08RDP.doc.
    [20]
    闫之辉,邓莲堂.WRF模式中的微物理过程及其预报对比试验.沙漠与绿洲气象,2007,1(6):1-6. http://www.cnki.com.cn/Article/CJFDTOTAL-XJQX200706001.htm
    [21]
    牛俊丽,闫之辉.WRF模式微物理方案对强降水预报的影响.科技信息,2007,23:17-20. http://www.cnki.com.cn/Article/CJFDTOTAL-KJXX200723012.htm
    [22]
    刘还珠,黄卓.NMC与HLAFS降水预报的比较.气象,1998,24(1):47-52. http://www.cnki.com.cn/Article/CJFDTOTAL-QXXX801.009.htm
    [23]
    Warner T T,Peterson R A,Treadon R E.A tutorial on lateral boundary conditions as a basic and potentially serious limitation to regional numerical prediction.Bull Amer Meteor Soc,1997,78:2599-2617. doi:  10.1175/1520-0477(1997)078<2599:ATOLBC>2.0.CO;2
    [24]
    魏凤英.全国夏季降水区域动态权重集成预报实验.应用气象学报,1999,10(4):402-409. http://www.cnki.com.cn/Article/CJFDTOTAL-YYQX199904002.htm
    [25]
    段明铿,王盘兴.一种新的集合预报权重平均方法.应用气象学报,2006,17(4):488-493. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20060484&flag=1
    [26]
    林春泽.智协飞.韩艳,等.基于TIGGE资料的地面气温多模式超级集合预报.应用气象学报,2009,20(6):706-712. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20090608&flag=1
    [27]
    马清,龚建东,李莉,等.超级集合预报的误差订正与集成研究.气象,2008,34(3):42-48. http://www.cnki.com.cn/Article/CJFDTOTAL-QXXX200803009.htm
    [28]
    毛恒青,陈谊,陈德辉.神威中期集合数值预报产品的业务应用.应用气象学报,2002,13(1):56-61. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20020106&flag=1
    [29]
    Masaru Kunii,Masahiro Hara,Kazuo Saito,et al.Intercomparison of Ensemble Prediction Systems in the WWRP B08RDP Project.The Fourth Workshop of B08FDP/RDP (CD),Guang Zhou,2009.
    [30]
    皇甫雪官.国家气象中心集合数值预报检验评价.应用气象学报,2002,13(1):29-36. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20020103&flag=1
    [31]
    段明铿,王盘兴,吴洪宝.夏季亚欧中高纬度环流的集合预报效果检验.应用气象学报,2009,20(1):56-61. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20090107&flag=1
  • 加载中
  • -->

Catalog

    Figures(11)  / Tables(3)

    Article views (4952) PDF downloads(1863) Cited by()
    • Received : 2010-02-11
    • Accepted : 2010-07-29
    • Published : 2010-10-31

    /

    DownLoad:  Full-Size Img  PowerPoint