Liu Xiaoran, Cheng Bingyan, Li Guoping. Variation characteristics and causes of the flood and drought in the three gorges area in summer. J Appl Meteor Sci, 2010, 21(5): 590-597.
Citation: Liu Xiaoran, Cheng Bingyan, Li Guoping. Variation characteristics and causes of the flood and drought in the three gorges area in summer. J Appl Meteor Sci, 2010, 21(5): 590-597.

Variation Characteristics and Causes of the Flood and Drought in the Three Gorges Area in Summer

  • Received Date: 2009-11-12
  • Rev Recd Date: 2010-07-07
  • Publish Date: 2010-10-31
  • The Three Gorges area is located in the East Asian monsoon region. Under the influence of the monsoon activity, the precipitation of the Three Gorges area mainly concentrates on the period from June to August with relatively high variability, which is prone to the occurrence of the flood and drought disaster. The flood and drought of the Three Gorges area not only has a great impact on the lives of local residents and social activities, but also directly determines the operation and power generation efficiency of the Three Gorges Hydropower complex Project. As a result, the study of the variation characteristics and the formation of the flood and drought of the Three Gorges area is of great significance, providing a scientific decision base to prevent the disaster of flood and drought.
    The temporal evolution of the drought and flood of the Three Gorges area in summer and its circulation patterns in the anomalous years are analyzed, obtaining a consistent result. The droughts occur frequently in the Three Gorges area in summer from 1951 to 1978. Following, there is a decadal abrupt change from the droughts to the floods in 1979. Then the floods are popular in the Three Gorges area from 1979 to 2000. Severe droughts take place frequently in the Three Gorges area after 2001. The circulation patterns are obviously different between in severe flood years and in severe drought years of the Three Gorges area. As for the severe flood years of the Three Gorges area, the South Asia High strengthens in 100 hPa, and there is a "-+-" wave train from the west to the east of the Eurasia high latitude area in 500 hPa height anomaly, which reflects that there are continuing block highs in the Okhotsk and Ural regions. Furthermore, the weaker convections over the Western Pacific Warm Pool make the West Pacific Subtropical High to shift southward. In addition, there is strengthening southwest water vapor transport from the Three Gorges area to the Indo China peninsula, which enhances the water vapor convergence in the Three Gorges area. These circulation patterns are advantageous to the genesis of the floods in the Three Gorges area.
  • Fig. 1  The change (a) and its moving t-statistic curve (b) of the flood and drought indexes of the Three Gorges area in summer from 1951 to 2008

    Fig. 2  The change of the flood and drought grades of the Three Gorges area in summer from 1951 to 2008

    Fig. 3  The composite anomaly fields of 100 hPa height in summer of the Three Gorges area (unit:gpm)

    (shaded areas denote passing the test of 0.1 level; the square frame is the Three Gorges area) (a) severe flood years, (b) severe drought years, (c) difference between severe flood and drought years

    Fig. 4  The composite fields of 500 hPa height anomaly in summer of the Three Gorges area (unit:gpm)

    (shaded areas denote passing the test of 0.1 level; the square frame is the Three Gorges area) (a) severe flood years, (b) severe drought years, (c) difference between severe flood and drought years

    Fig. 5  The composite anomaly fields of the water vapour flux of total layers stream vector in summer of the Three Gorges area

    (shade dareas denote passing the test of 0.1 level; the square frame is the Three Gorges area) (a) severe flood years, (b) severe drought years, (c) difference between severe flood and drought years

    Fig. 6  The composite anomaly fields of the water vapour flux divergence of total layers in summer of the Three Gorges area (unit:10-6 kg·m-2·s-1)

    (shaded areas denote passing the test of 0.1 level; the square frame is the Three Gorges area) (a) severef lood years, (b) severe drought years, (c) difference between severef lood and drought years

    Fig. 7  The correlation distribution between the flood, drought indexes of the Three Gorges area in summer and the OLR over East Asian in summer (shaded areas denote passing the test of 0.05 level; the square frame is the Three Gorges area)

    Table  1  Grades of drought and flood

    Table  2  The correlations between Z index of each stationin the Three Gorges area and the mean of Z index in summer rainfall from 1951 to 2008

  • [1]
    张建敏,黄朝迎,吴金栋.三峡工程建成后枯水期运行的气候风险研究.应用气象学报,2001,16(2):91-98. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20010229&flag=1
    [2]
    王梅华,刘莉红,张强.三峡地区气候特征.气象,2005,31(7):67-71. http://www.cnki.com.cn/Article/CJFDTOTAL-QXXX200507015.htm
    [3]
    廖要明,张强,陈德亮.1961-2006年三峡库区夏季气候特征.气候变化研究进展,2007,3(6):368-372. http://www.cnki.com.cn/Article/CJFDTOTAL-QHBH200706014.htm
    [4]
    叶殿秀,邹旭恺,张强,等.长江三峡库区高温天气的气候特征分析.热带气象学报,2008,24(2):200-204. http://www.cnki.com.cn/Article/CJFDTOTAL-RDQX200802013.htm
    [5]
    叶殿秀,张强,邹旭恺.三峡库区雷暴气候变化特征分析.长江流域资源与环境,2005,14(3):381-385. http://www.cnki.com.cn/Article/CJFDTOTAL-CJLY200503023.htm
    [6]
    陈鲜艳,张强,叶殿秀,等.三峡库区局地气候变化.长江流域资源与环境,2009,18(1):47-51. http://www.cnki.com.cn/Article/CJFDTOTAL-CJLY200901009.htm
    [7]
    陈鲜艳,张强,邹旭恺,等.近几十年三峡库区主要气象灾害变化趋势.长江流域资源与环境,2009,18(3):296-300. http://www.cnki.com.cn/Article/CJFDTOTAL-CJLY200903017.htm
    [8]
    刘晓冉,杨茜,程炳岩,等.三峡库区21世纪气候变化的情景预估分折.长江流域资源与环境,2010,19(1):42-47. http://www.cnki.com.cn/Article/CJFDTOTAL-CJLY201001009.htm
    [9]
    柏晶瑜,徐祥德,周玉淑,等.春季青藏高原感热异常对长江中下游夏季降水影响的初步研究.应用气象学报,2003,14(3):108-113. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20030344&flag=1
    [10]
    吴贤云,丁一汇,王琪,等.近40年长江中游地区旱涝特点分析.应用气象学报,2006,17(1):19-28.
    [11]
    王遵娅,丁一汇.夏季长江中下游旱涝年季节内振荡气候特征.应用气象学报,2008,19(6):72-77. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20080610&flag=1
    [12]
    王跃男,陈隆勋,何金海,等.夏季青藏高原热源低频振荡对我国东部降水的影响.应用气象学报,2009,20(4):37-45. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20090405&flag=1
    [13]
    鞠笑生,杨贤为,陈丽娟,等.我国单站旱涝指标确定和区域洪涝级别划分的研究.应用气象学报,1997,8(1):26-33. http://www.cnki.com.cn/Article/CJFDTOTAL-YYQX701.003.htm
    [14]
    幺枕生,丁裕国.气候统计.北京:气象出版社,2000:161-180.
    [15]
    胡娅敏,丁-汇.2000年以来江淮梅雨带北移的可能成因分析.气象,2009,35(12):37-43. http://www.cnki.com.cn/Article/CJFDTOTAL-QXXX200912006.htm
    [16]
    司东,丁一汇,柳艳菊.中国梅雨雨带年代际尺度上的北移及其原因.科学通报,2010,55(1):63-73. http://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201001016.htm
    [17]
    刘晓冉,杨茜,程炳岩.2006年盛夏川渝严重伏旱的同期环流场和水汽场异常特征分析.气象,2009,35(5):27-34. http://www.cnki.com.cn/Article/CJFDTOTAL-QXXX200908002.htm
    [18]
    黄嘉佑.气象统计分析与预报方法(第2版).北京:气象出版社,2000:21.
    [19]
    钱永甫,张琼,张学洪.南亚高压与我国盛夏气候异常.南京大学学报(自然科学),2002,38(3):295-307. http://www.cnki.com.cn/Article/CJFDTOTAL-NJDZ200203004.htm
    [20]
    李崇银.气候动力学引论.北京:气象出版社,2000:514-516.
    [21]
    Wang Y.Effects of blocking anticyclones in Eurasia in the rainy season(meiyu/baiu season).J Meteor Soc Japan,1992,70:929-951. http://www.oalib.com/references/19082717
    [22]
    张庆云,陶诗言.亚洲中高纬度环流对东亚夏季降水的影响.气象学报,1998,56(2):199-211. http://www.cnki.com.cn/Article/CJFDTOTAL-QXXB802.006.htm
    [23]
    黄荣辉,李维京.夏季热带西太平洋上空的热源异常对东亚上空副热带高压的影响及其物理机制.大气科学,1988,12(特刊):107-116.
    [24]
    Ninomiya K.Moisture balance over China and the South China Sea during the summer monsoon in 1991 in relation to the intense rainfall over China.J Meteor Soc Japan,1999,77:737-751.
    [25]
    施小英,徐祥德,王浩,等.长江中下游地区旱涝异常的水汽输送结构特征及其变化趋势.水利学报,2008,39(5):596-603. http://www.cnki.com.cn/Article/CJFDTOTAL-SLXB200805014.htm
    [26]
    黄荣辉.引起我国夏季旱涝的东亚大气环流异常遥相关及其物理机制的研究.大气科学,1990,14(1):108-117. http://www.cnki.com.cn/Article/CJFDTOTAL-DQXK199001013.htm
    [27]
    黄荣辉,孙凤英.热带西太平洋暖池的热状况及其上空的对流活动对东亚夏季气候异常的影响.大气科学,1994,18(2):141-151. http://www.cnki.com.cn/Article/CJFDTOTAL-DQXK199402001.htm
  • 加载中
  • -->

Catalog

    Figures(7)  / Tables(2)

    Article views (3372) PDF downloads(1530) Cited by()
    • Received : 2009-11-12
    • Accepted : 2010-07-07
    • Published : 2010-10-31

    /

    DownLoad:  Full-Size Img  PowerPoint