Chen Guanjun, Wei Fengying, Gong Yuanfa. Assessing the extended range forecast error of NCEP/CFS in the summer of East Asia. J Appl Meteor Sci, 2010, 21(6): 659-670.
Citation: Chen Guanjun, Wei Fengying, Gong Yuanfa. Assessing the extended range forecast error of NCEP/CFS in the summer of East Asia. J Appl Meteor Sci, 2010, 21(6): 659-670.

Assessing the Extended Range Forecast Error of NCEP/CFS in the Summer of East Asia

  • Received Date: 2010-02-22
  • Rev Recd Date: 2010-07-12
  • Publish Date: 2010-12-31
  • Regional and persistent heavy rain in the southern parts of China can lead to severe flooding, and abnormality of key circulation system in East Asia is the most important inducement for the abnormal precipitation in target area. Furthermore, the low frequency oscillation (LFO) has special impact on the extended range forecast of general circulation. By use of fully coupled retrospective forecasts covering a 24 year period (1981—2004) provided by NCEP Climate Forecast System (CFS), the 1 to 30 days predictive skill and errors between forecast and observations (NCEP/DOE Atmospheric Model Intercomparison Project (AMIP) Ⅱ Reanalysis) are diagnosed and the predictive skill of three typical cases of persistent heavy rain, in the Yangtze Huaihe River Valley, the southern parts to the Yangtze River and South China are examined respectively. The influence of LFO on extended range forecast skill is revealed.The forecast skill of 200 hPa, 500 hPa and 850 hPa heights is obtained, by calculating the anomaly correlation coefficient (ACC) between predicted and observed fields over a typical region of the East Asia during the summer. Based on the 24 year climatology, the ACC skill maintains greater than 0.6 at a lead time of less than 6 days, which is the average level of current numerical weather prediction models. The ACC drops rapidly with increasing lead time but when it comes to 10—19 days, the ACC is relatively stable and ranges from 0.05 to 0.15. The errors also keep stable at the lead time of more than 10 days with the predicted fields lower than the observations in areas north of 60°N and higher than the observations in areas between 40°N and 60°N.By use of 30—60 days component data which is obtained by Butterworth Band pass Filter, the forecast exhibits more skillful with the ACC to observed 30—60 days component data of about 0.15 at lead time of 15 days.From the typical cases, it's found that the low frequency precipitation with quasi two weeks and 30—60 days fluctuation is an important characteristic of the persistent heavy rain, and the CFS exhibits some useful extended range forecasts skill to the low frequency oscillations of major circulation system which is useful for estimating the main region and intensity of persistent heavy rain. This may provide valuable information for utilizing the numerical products and modeling extended range forecasts.
  • Fig. 1  Anomaly correlations between forecasts and observations of summer height in East Asia as a function of forecast time during 1981--2004

    Fig. 2  Changes of anomaly correlations between forecasts and observations of 500 hPa height in East Asia during1981-2004

    Fig. 3  The spatial distribution of ACC between 15 days forecasts and observations of 500 hPa height during 1981-2004

    Fig. 4  Spatial distribution of the difference between forecasts and observations of 500 hPa height during 1981-2004 (unit:dagpm)

    Fig. 5  ACC of height at 200 hPa, 500 hPa and meridional wind at 850 hPa by 30-60 days band-pass filter, 10-20 days band-pass filter and unfiltered with the averaged ACC from 1981 to 2004

    Fig. 6  Time series of precipitation anomalies from 1 June to 31 August in Yangtze-Huaihe River Valley, the southern partstothe Yangtze River and South China

    Fig. 7  The 30-60 days LFO of three major indexes around the heavy rain process in Yangtze-Huaihe River Valley from 21 June to 19 July 1991

    Fig. 8  The 30-60 days LFO of several major indexes for the heavy rain process in the southern parts to the Yangtze River from 9 June to 7 July in 1998 and the heavy rain process in South China from 10 June to 8 July in 2005

    Fig. 9  10-20 days LFO of the major weather systems (a) subtropical high ridge line index of the heavy rain process in the southern parts to the Yangtze River from 9 June to 7 July in1998, (b) Somalia cross-equatorial flow index of the heavy rain process in South China from10 June to 8 July in 2005

    Table  1  Correlation coefficients (passing the test of 0.05 level) and variance contribution of daily precipitation LFO to the unfiltered

  • [1]
    丑纪范, 郜吉东.长期数值天气预报.北京:气象出版社, 1995.
    [2]
    顾震潮.天气数值预报中过去资料的使用问题.气象学报, 1958, 29:176-184. http://www.cnki.com.cn/Article/CJFDTOTAL-QXXB195803002.htm
    [3]
    Jung T. Systematic errors of the atmospheric circulation in the ECMWF model.J R Meteor, 2005, 131: 1045-1073 doi:  10.1256/qj.04.93
    [4]
    Timothy W B, John DH.The impact of climatology and systematic error upon the skill of DERF forecasts.Mon Wea Rev, 1989, 12:2835-2842.
    [5]
    Miykadoa K, Sirutis J.Subgrid scale physics in 1-month forecast, Part :Systematic error and blocking forecast.Mon Wea Rev1990, 123:1065-1081.
    [6]
    Lorenz EN.Deterministic non-period flow.J Atmos Sci, 1963, 20:130-141. doi:  10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2
    [7]
    丑纪范.天气数值预报中使用过去资料的问题.中国科学, 1974, 17(6):635-644. http://www.cnki.com.cn/Article/CJFDTOTAL-JAXK197406010.htm
    [8]
    李崇银.大气季节内振荡研究的新进展.自然科学进展, 2004, 14:734-741. http://www.cnki.com.cn/Article/CJFDTOTAL-ZKJZ200407004.htm
    [9]
    杨秋明.10~30d延伸期天气预报及发展趋势.中国新技术新产品, 2008, 7:96-97. http://www.cnki.com.cn/Article/CJFDTOTAL-XPJX200807038.htm
    [10]
    李跃清.1981和1982年夏半年高原地区低频振荡与南亚高压活动.高原气象, 1996, 15(3):276-281. http://www.cnki.com.cn/Article/CJFDTOTAL-GYQX603.002.htm
    [11]
    Saha S, Nadiga S, Thiaw C, et al.The NCEP Climate Forecast System.J Climate, 2006, 19(15):3483-3517. doi:  10.1175/JCLI3812.1
    [12]
    Ake Johansson, Catherine Thiaw, Suranjana Saha.CFS Retrospective Forecast Daily Climatology in the EMC/NCEP CFS Public Server.Environmental Modeling Center, NCEP/NWS/NOAA, 2007.
    [13]
    陈桂英, 赵振国.短期气候预测评估方法和业务初估.应用气象学报, 1998, 9(2):178-185. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=19980225&flag=1
    [14]
    Talagrand O.Assimilation of observations—An introduction.J Meteor Soc Japan, 1997, 75(1):191-209.
    [15]
    魏凤英.现代气候统计诊断与预测技术 (第2版).北京:气象出版社, 2007:71-75.
    [16]
    Murakami M.Analysis of deep convective activity over the western Pacific and southeast Asia.Part II:Seasonal and intraseasonal variation during the northern summer.J Meteor Soc Japan, 1984, 62(1):88-108.
    [17]
    李志锦, 纪立人.混沌系统的局地特征与可预报性.气象学报, 1995, 53(3):271-280. http://www.cnki.com.cn/Article/CJFDTOTAL-QXXB503.002.htm
    [18]
    Van den Dool, Saha S.Frequency dependence in forecast skill. Mon Wea Rev, 1990, 118:128-137. doi:  10.1175/1520-0493(1990)118<0128:FDIFS>2.0.CO;2
    [19]
    鲍名.近50年我国持续性暴雨的统计分析及其大尺度环流背景.大气科学, 2007, 31(5):779-792. http://www.cnki.com.cn/Article/CJFDTOTAL-DQXK200705002.htm
    [20]
    陈晓红, 张娇.2004年安徽省梅汛期三次暴雨过程的大气低频振荡背景.应用气象学报, 2005, 16(6):755-761. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20050698&flag=1
    [21]
    陈丽臻, 张先恭, 陈隆勋.长江流域两个典型旱?涝年大气30─60天低频波差异的初步分析.应用气象学报, 1994, 5(4):484-487. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=19940482&flag=1
    [22]
    矫梅燕, 龚建东, 周兵, 等.天气预报的业务技术进展.应用气象学报, 2006, 17(5):596-597. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=200605102&flag=1
    [23]
    赵振国.中国夏季旱涝及环境场.北京:气象出版社, 2000:38-40;45-46;75.
    [24]
    王瀛, 王茜, 陈宇, 等.ECMWF模式副热带高压指数释用产品的应用.气象与环境学报, 2007, 23(5):26-31. http://www.cnki.com.cn/Article/CJFDTOTAL-LNQX200705004.htm
    [25]
    毛江玉, 吴国雄.1991年江淮梅雨与副热带高压的低频振荡.气象学报, 2005, 63(5):762-770. http://www.cnki.com.cn/Article/CJFDTOTAL-QXXB200505019.htm
    [26]
    丁一汇.1991年江淮流域持续性特大暴雨研究.北京:气象出版社, 1993:47-50.
    [27]
    周兵, 文继芬.1998年夏季我国东部降水与大气环流异常及其低频特征.应用气象学报, 2007, 18(2):129-136. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20070225&flag=1
    [28]
    王秀文, 晁淑懿, 马德贞, 等.1998年长江嫩江流域特大暴雨的成因及预报应用研究.北京:气象出版社, 2001:103-110.
    [29]
    鲍媛媛, 金荣花, 琚建华, 等.2005年初夏亚洲季风异常对华南强降雨的影响.应用气象学报, 2009, 20(3):277-284. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20090303&flag=1
    [30]
    马慧, 陈桢华.2005年6月华南暴雨的气候背景.广东气象, 2005, 4:14-16. http://www.cnki.com.cn/Article/CJFDTOTAL-GDCX200504004.htm
    [31]
    赵玉春, 李泽椿, 肖子牛.南半球冷空气爆发对华南连续性暴雨影响的个例分析.气象, 2007, 33(3):40-47. http://www.cnki.com.cn/Article/CJFDTOTAL-QXXX200703005.htm
  • 加载中
  • -->

Catalog

    Figures(9)  / Tables(1)

    Article views (3710) PDF downloads(1184) Cited by()
    • Received : 2010-02-22
    • Accepted : 2010-07-12
    • Published : 2010-12-31

    /

    DownLoad:  Full-Size Img  PowerPoint