Zhao Liang, Zhu Yuxiang, Cheng Liang, et al. A dynamic approach to retrieving snow depth based on integration of remote sensing and observed data. J Appl Meteor Sci, 2010, 21(6): 685-697.
Citation: Zhao Liang, Zhu Yuxiang, Cheng Liang, et al. A dynamic approach to retrieving snow depth based on integration of remote sensing and observed data. J Appl Meteor Sci, 2010, 21(6): 685-697.

A Dynamic Approach to Retrieving Snow Depth Based on Integration of Remote Sensing and Observed Data

  • Received Date: 2010-03-26
  • Rev Recd Date: 2010-07-12
  • Publish Date: 2010-12-31
  • Both the observed data and remote sensing data have respective different advantages and disadvantages. Based on integration of observed and remote sensing data, a temporal spatial dynamic approach to retrieve snow depth is explored by skillfully combining observation station data in China and brightness temperature (Tb) from the Special Sensor Microwave Imager (SSM/I). The aim is to utilize the dynamic scheme of the statistical relation to overcome the complexity of the physical relation between Tb and snow depth, accordingly, to improve the retrieval precision in marginal regions of snow cover and the regions where there are few observation stations. The dynamic scheme is implemented by the following steps: For the first time, according to the linear relationship between observed snow depth and Tb difference at each station, the retrieval coefficients of all stations at this time can be achieved, which guarantees the coefficients' spatial difference. Second, after reasonable influencing radius decided, by using of Cressman interpolation algorithm, the retrieval coefficients at all grid points at this time can be obtained, which guarantees the coefficients' spatial continuity. Third, unreasonable stations and grids are eliminated through quality control. Last, for the next time, the previous steps are repeated, and so on, which guarantees temporal dynamics. Its biggest characteristic is that the retrieval coefficients are not fixed, but variable with time and space, which overcomes the errors from regional and temporal (seasonal) differences of the physical features. By comparing it with another retrieval approach, the primary analysis indicates that the error of the snow data through the dynamic approach to retrieving snow depth based on integrated observed and remote sensing data is generally smaller, and the accuracy percentage is higher. Compared to observed data, it has a continuous snow depth distribution that is more reasonable than that of observed field, and in the regions where there are few stations, more appropriate snow depth data could still be obtained. Moreover, compared with the results from direct remote sensing retrieval approach and visible snow cover, the distribution of snow cover obtained by the approach is closer to real field, while the results from static remote sensing retrieval approach and visible snow cover usually underestimate snow cover extent in North China and Central China, and the retrieval result in the western China is also improved using the dynamic approach.
  • Fig. 1  The distribution of distances between each grid point and its nearest station (shaded area), stations with snow (white dot) and without snow (black dot) in China on 15 Jan 2000

    Fig. 2  Technical route of the temporal-spatial dynamic approach to retrieving snow depth based on integration of remote sensing and observed data

    Fig. 3  Dynamic retrieval coefficients (a), dynamic retrieval snow depth (b), observed snow depth (c) and retrieval snow depth by Chang 92 approach (d) on 21 Jan 2000 with NSIDC snow cover distribution during 17-23 Jan 2000(e) in China

    Fig. 4  Dynamic retrieval coefticients (a), dynamic retrieval snow depth (b), observed snow depth (c) and retrieval snow depth by Chang92 approach (d) on 21 Jan 2000 with NSIDC distribution during 24-30 Jan 2000(e) in China

    Fig. 5  Scatter plots of observed and retrieval snow depth in each station by different approaches on 21 Jan 2000

    Fig. 6  The spatial distribution of error and the distribution of global error percentage

    Fig. 7  The daily evolutions of averaged snow depth (a), its standard deviation (b) and error (c) of the stations with snow from 9 Jan to 31 Dec in 2000

    Fig. 8  The daily evolutions of retrieval accuracy rates (curve, error threshold: 5 cm) of the dynamic and Chang92 approaches, and the number (histogram) of stations with snow from 9 Jan to 31 Dec tn 2000

    Table  1  The relationship between observed snow depth and SSM/I brightness temperature difference at 5 stations on 15 Jan 2000

    Table  2  The relationship between observed snow depth and brightness temperature difference in Beijing during 11-28 Jan 2000

    Table  3  The comparison of accuracy rates between the dynamic retrieval approach and Changes92 approach (unit:%)

  • [1]
    陈烈庭.青藏高原冬春季异常雪盖与江南前汛期降水关系的检验和应用.应用气象学报, 1998, 9(增刊):1-8. http://www.cnki.com.cn/Article/CJFDTOTAL-YYQX8S1.000.htm
    [2]
    谢志辉, 罗勇.青藏高原雪盖变化对我国气候的影响.应用气象学报, 1999, 10(增刊):122-131. http://www.cnki.com.cn/Article/CJFDTOTAL-YYQX9S1.014.htm
    [3]
    Drusch M, Vasiljevic D, Viterbo P.ECMWF's global snow analysis:Assessment and revision based on satellite observations.J Applied Meteor, 2004, 43:1282-1294. doi:  10.1175/1520-0450(2004)043<1282:EGSAAA>2.0.CO;2
    [4]
    刘玉洁, 郑照军, 王丽波.我国西部地区冬季雪盖遥感和变化分析.气候与环境研究, 2003, 8(1):114-123. http://www.cnki.com.cn/Article/CJFDTOTAL-QHYH200301013.htm
    [5]
    Mcginnis D F, Pritchard, J A, Wiesnet D R.Snow Depth and Snow Extent Using VHRR Data from NOAA-2 Satellite.NOAA, Technical Memorandum, NESS, 63, 1975.
    [6]
    曾群柱, 冯学智.西藏那曲积雪深度的综合分析方法.中国科学院兰州冰川冻土研究所集刊 (第8号).北京:科学出版社, 1995:56-61.
    [7]
    陈乾.用AVHRR资料反演祁连山积雪参量.冰川冻土, 1990, 12(4):485-496.
    [8]
    周咏梅, 贾生海, 刘萍.利用NOAA-AVHRR资料估算积雪参量.气象科学, 2001, 21(1):117-121. http://www.cnki.com.cn/Article/CJFDTOTAL-QXKX200101014.htm
    [9]
    梁天刚, 吴彩霞, 陈全功, 等.北疆牧区积雪图像分类与雪深反演模型的研究.冰川冻土, 2004, 26(2):160-165. http://www.cnki.com.cn/Article/CJFDTOTAL-BCDT200402007.htm
    [10]
    延昊.NOAA16卫星积雪识别和参数提取.冰川冻土, 2004, 26(3):367-373. http://www.cnki.com.cn/Article/CJFDTOTAL-BCDT200403020.htm
    [11]
    李三妹, 傅华, 黄镇, 等.用EOS/MODIS资料反演积雪深度参量.干旱区地理, 2006, 29(5):718-725. http://www.cnki.com.cn/Article/CJFDTOTAL-GHDL200605020.htm
    [12]
    刘艳, 张璞, 李杨, 等.基于MODIS数据的雪深反演———以天山北坡经济带为例.地理与地理信息科学, 2005, 21(6):41-44. http://www.cnki.com.cn/Article/CJFDTOTAL-DLGT200506011.htm
    [13]
    裴欢, 房世峰, 覃志豪, 等.基于遥感的新疆北疆积雪盖度及雪深监测.自然灾害学报, 2008, 17(5):52-57. http://www.cnki.com.cn/Article/CJFDTOTAL-ZRZH200805010.htm
    [14]
    吴杨, 张佳华, 徐海明, 等.卫星反演积雪信息的研究进展.气象, 2007, 33(6):3-10. http://www.cnki.com.cn/Article/CJFDTOTAL-QXXX200706000.htm
    [15]
    Chang A T C, Foster J L, Hall D K.Nibus27 SMMR derived global snow cover parameters.Ann Glaciol, 1987, 9:39-44.
    [16]
    Foster J L, Chang A T C, Hall D K.Comparison snow mass estimates from a prototype passive microwave snow algorithm, a revised algorithm and snow depth climatology.Remote Sens Environ, 1997, 62:132-142. doi:  10.1016/S0034-4257(97)00085-0
    [17]
    Tait A B.Estimation of snowwater equivalent using passive microwave radiation data.Remote Sens Environ, 1998, 64(2):286-291.
    [18]
    曹梅盛, 李培基, Robinson D A, 等.中国西部积雪SSMR微波遥感的评价与初步应用.环境遥感, 1993, 8(3):260-269.
    [19]
    曹梅盛, 李培基.中国西部积雪微波遥感监测.山地研究, 1994, 12(4):231-233. http://www.cnki.com.cn/Article/CJFDTOTAL-SDYA404.006.htm
    [20]
    柏延臣, 冯学智, 李新, 等.青藏高原雪深被动微波遥感反演与结果评价.遥感学报, 2001, 5(3):161-165.
    [21]
    陈爱军, 刘玉洁, 杜秉玉.应用AMSU资料监测中国地区雪盖的初步研究.应用气象学报, 2005, 16(1):35-44. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20050105&flag=1
    [22]
    车涛. 积雪被动微波遥感反演与积雪数据同化方法研究. 兰州: 中国科学院寒区旱区环境与工程研究所, 2006. http: //www. oalib. com/references/16110366
    [23]
    李晓静, 刘玉洁, 朱小祥, 等.利用SSM/I数据判识我国及周边地区雪盖.应用气象学报, 2007, 18(1):12-20. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20070103&flag=1
    [24]
    Jin Y Q.Simulation of a multi-layer model of dense scaterers for anomalous scattering signatures from SSM/I snow data.International Journal of Remote Sensing, 1997, 18(12):2531-2538. doi:  10.1080/014311697217459
    [25]
    Shi J, Dozier J.Estimation of snow water equivalence using SIR-C/X-SAR. II.Inferring snow depth and particle size.IEEE Transaction on Geoscience and Remote Sensing, 2000, 38(6):2475-2488. doi:  10.1109/36.885196
    [26]
    Ulaby FT, Moore R K, Fung A K.Microwave Remote Sensing:Active and Passive.Volume III:From Theory to Applications.Norwood, M A:Artech House, 1986:1065-2162.
    [27]
    Walker A E, Goodison B E.Discrimination of a wet snow cover using passive microwave satellite data.Ann Glaciol, 1993, 17:307-311.
    [28]
    Matzler C.Passive microwave signatures of landscapes in winter.Meteorol Atmos Phys, 1994, 54:241-260. doi:  10.1007/BF01030063
    [29]
    Grody N C.Classification of snow cover and precipitation using the special sensor microwave imager.Journal of Geophysical Re-search, 1991, 96:7423-7435. doi:  10.1029/91JD00045
    [30]
    Neale C M U, McFarland M L, Chan gK.Land-surface-type classification using microwave brightness temperatures from the special sensor microwave/imager.IEEE Trans Geosci Remote Sens, 1990, 28(5):829-837. doi:  10.1109/36.58970
    [31]
    Kelly R E, Chang A T, Tsang L, et al.A prototype AMSRE global snow area and snow depth algorithm.IEEE Trans Geosci Remote Sensing, 2003, 41(2):230-242. doi:  10.1109/TGRS.2003.809118
    [32]
    Armstrong R L, Knowles K W, Brodzik M J, et al.DMSP SSM/I Pathfinder Daily EASE-Grid Brightness Temperatures.Boulder, Colorado USA:National Snow and Ice Data Center, 2003.
    [33]
    Cressman G P.An operational objective analysis system.Mon Wea Rev, 1959, 87:367-374. doi:  10.1175/1520-0493(1959)087<0367:AOOAS>2.0.CO;2
    [34]
    王跃山.客观分析和四维同化———站在新世纪的回望 (Ⅱ) 客观分析的主要方法 (1).气象科技, 2001, 1:1-9. http://www.cnki.com.cn/Article/CJFDTOTAL-QXKJ200101000.htm
    [35]
    冯锦明, 赵天保, 张英娟.基于台站降水资料对不同空间内插方法的比较.气候与环境研究, 2004, 6:261-277. http://www.cnki.com.cn/Article/CJFDTOTAL-QHYH200402003.htm
    [36]
    高峰, 李新, ArmstrongRL, 等.被动微波遥感在青藏高原积雪业务监测中的初步应用.遥感技术与应用, 2003, 18(6):360-363. http://www.cnki.com.cn/Article/CJFDTOTAL-YGJS200306002.htm
    [37]
    Chang A T C, Foster J L, Hall D K, et al.The use of microwave radiometer data for characterizing snow storage in western China.Ann Glaciol, 1992, 16:215-219.
    [38]
    车涛, 李新.青藏高原积雪深度和雪水当量的被动微波遥感反演.冰川冻土, 2004, 26(3):363-368. http://www.cnki.com.cn/Article/CJFDTOTAL-BCDT200403019.htm
    [39]
    延昊, 张佳华.基于SSM/I被动微波数据的中国积雪深度遥感研究.山地学报, 2008, 26(1):59-64. http://www.cnki.com.cn/Article/CJFDTOTAL-SDYA200801013.htm
    [40]
    Noh Y-J, Liu G, Jones A S, et al.Toward snowfall retrieval over land by combining satellite and in situ measurements.J Geophys Res, 2009, 114, D24205, doi: 10.1029/2009JD012307.
    [41]
    车涛, 李新.1993—2002年中国积雪水资源时空分布与变化特征.冰川冻土, 2005, 27(1):64-67. http://www.cnki.com.cn/Article/CJFDTOTAL-BCDT20050100C.htm
    [42]
    Chang A T C, Foster J L, Hall D K.Satellite sensor estimates of northern hemisphere snow volume.International Journal of Remote Sensing, 1990, 11(1):167-171. doi:  10.1080/01431169008955009
    [43]
    李培基, 曹梅盛, ChangA T C, 等.中国西部SMMR积雪图的修正.冰川冻土, 1992, 14(4):366-374. http://www.cnki.com.cn/Article/CJFDTOTAL-BCDT199204008.htm
    [44]
    柯长青, 李培基.青藏高原积雪分布与变化特征.地理学报, 1998, 53(3):209-215. http://www.cnki.com.cn/Article/CJFDTOTAL-DLXB803.002.htm
    [45]
    Grody N C, Basist A N.Global identification of snowcover using SSM/I measurements.IEEE Trans Geosci Remote Sensing, 1996, 34:237-249. doi:  10.1109/36.481908
  • 加载中
  • -->

Catalog

    Figures(8)  / Tables(3)

    Article views (3633) PDF downloads(1327) Cited by()
    • Received : 2010-03-26
    • Accepted : 2010-07-12
    • Published : 2010-12-31

    /

    DownLoad:  Full-Size Img  PowerPoint