Huang Jian, Liu Zuoting, Huang Minhui, et al. The seasonal characteristics of regional atmospheric transport and dispersion over the Pearl River Delta. J Appl Meteor Sci, 2010, 21(6): 698-708.
Citation: Huang Jian, Liu Zuoting, Huang Minhui, et al. The seasonal characteristics of regional atmospheric transport and dispersion over the Pearl River Delta. J Appl Meteor Sci, 2010, 21(6): 698-708.

The Seasonal Characteristics of Regional Atmospheric Transport and Dispersion over the Pearl River Delta

  • Received Date: 2010-01-02
  • Rev Recd Date: 2010-08-16
  • Publish Date: 2010-12-31
  • After being emitted from the sources, air pollutants experience a series of atmospheric physical and chemical processes before reaching the receptor, in which the core process is the atmospheric transport, diffusion process and the clearance changes accompanied with them. Understanding the climatic background of atmospheric transport and diffusion of the Pearl River Delta would be helpful to determine the area affected by air pollutants, the regularity of air pollutants input, output and detention over this area, providing scientific basis for air pollution prediction, control and management. Based on the meteorological field of wind, temperature, humidity, geopotential height and precipitation from the NCEP/NCAR reanalysis for the period of 1985—2004, the HYSPLIT dispersion model and setting virtual air pollution sources approach are adopted to simulate the distribution of air pollutant, dispersive path and detention time over the Pearl River Delta, with full consideration of wet and dry removal processes. The seasonal characteristics and long term trends of atmospheric transport and diffusion process over this region are examined, and the main results are shown as follows. The significant differences of the distribution, diffusive paths and detention time of virtual air pollutants among four seasons suggest that there are remarkable seasonal variations of atmospheric transport and diffusion processes over the Pearl River Delta. In spring and summer, the air pollutant convergence zone is located at northwest side of the Pearl River Delta, while in autumn and winter it lies on the northwest side of the Pearl River Delta. Among four seasons, the convergence zone in summer is the strongest, followed by spring, autumn and winter. In spring and summer, the air pollutants are transported and dispersed to the mountainous area of the northwest and north side of the Pearl River Delta, respectively, while in autumn and winter, those are transported and dispersed along the relatively flat coast of western Guangdong to the west southwest. In autumn and winter, the atmospheric transport and diffusion rates are significantly higher than those in spring and summer. Pollutants stay over the Pearl River Delta for longer than 24 hours for 66.7% and 75.3% of all the air pollution events in spring and summer, respectively, while in autumn and winter, there are only 22.1% and 30.4%. The terrain effect is one of the possible factors that responsible for the weaker atmospheric transport and diffusion in spring and summer. For the period of 1985—2004, atmospheric transport and diffusion ability are weakest in 2004 and strongest in 1996 with significant annual differences, which may be caused by the variation of atmospheric systems.
  • Fig. 1  The topography of the Pearl River Delta and the distribution of the virtual emission sources (the grid cells denote the location of area source emssions)

    Fig. 2  The original 2.5°X2.5° horizontal wind field of NCEP/NCARreanalysis and the linear-interpolated 0.5°×0.5° horizontal wind field

    (a) the original wind field for summer, (b) the original wind field forwinter, (c) the liner-interpolated wind field for summer, (d) the linear-interpolated wind field for winter

    Fig. 3  The seasonal distributions of column concentrations for air pollutant

    Fig. 4  The seasonal distributions of aerosol optical depth derived from EOS MODIS in 2004

    Fig. 5  The distributions of column concentration of air pollutant for 6 hours, 12 hours, 24 hours, 48 hours after emitted

    Fig. 6  The detention-time of air pollutants for four seasons (a) spring, (b) summer, (c) autumn, (d) winter

    Fig. 7  The annual averaged column concentrations over the Pearl River Delta from 1985 to 2004

    Table  1  The statistics of、air pollutant detention-time for four seasons

  • [1]
    Malm W C. Characteristics and origins of haze in the continental United-States.Earth-Sci Rev, 1992, 33:1-36. doi:  10.1016/0012-8252(92)90064-Z
    [2]
    Samet J M, Dominici F, Curriero F C, et al.Fine particulate air pollution and mortality in 20 US Cities, 1987—1994.New Engl J Med, 2000, 343:1742-1749. doi:  10.1056/NEJM200012143432401
    [3]
    Houghton J T, Ding Y, Griggs D J, et al.Climate Change2001:The Scientific Basis.Cambridage:Cambridge University Press, 2001.
    [4]
    Menon S, Hansen E J, Nazarenko L, et al.Climate effects of black carbon aerosols in China and India.Science, 2002, 297:2250-2253. doi:  10.1126/science.1075159
    [5]
    蒋维楣, 曹文俊, 蒋瑞宾.空气污染气象学教程.南京:南京大学出版社, 1993.
    [6]
    徐祥德.城市大气环境污染动力学理论问题.应用气象学报, 2002, 13 (增刊):1-12. http://www.cnki.com.cn/Article/CJFDTOTAL-YYQX2002S1000.htm
    [7]
    任阵海, 万本太, 虞统, 等.不同尺度大气系统对污染边界层的影响及其水平流场输送.环境科学研究, 2004, 17(1):7-13. http://www.cnki.com.cn/Article/CJFDTOTAL-HJKX200401002.htm
    [8]
    Peppler R A.ARM Southern Great Plains site observations of the smoke pall associated with the 1998 Central American fires.Bull Amer Meteor Soc, 2000, 81:2563-2591. doi:  10.1175/1520-0477(2000)081<2563:ASGPSO>2.3.CO;2
    [9]
    Rogers C M, Bowman K P.Transport of smoke from the Central American fires of 1998.J Geophys Res, 2001, 106:28357-28368. doi:  10.1029/2000JD000187
    [10]
    苏福庆, 任阵海, 高庆先, 等.北京及华北平原边界层大气中污染物的汇聚系统—边界层输送汇.环境科学研究, 2004, 17(1):21-33. http://www.cnki.com.cn/Article/CJFDTOTAL-HJKX200401004.htm
    [11]
    钱光明.广东省气候业务技术手册.北京:气象出版社, 2008:281.
    [12]
    李琼, 李福娇, 叶燕翔, 等.珠江三角洲地区天气类型与污染潜势及污染浓度的关系.热带气象学报, 1999, 15(4):363-369. http://www.cnki.com.cn/Article/CJFDTOTAL-RDQX199904009.htm
    [13]
    范绍佳, 王安宇, 樊琦, 等.珠江三角洲大气边界层特征及其概念模型.中国环境科学, 2006, 26(增刊):4-6. http://www.cnki.com.cn/Article/CJFDTOTAL-ZGHJ2006S1001.htm
    [14]
    王淑兰, 张远航, 钟流举, 等.珠江三角洲城市间空气污染的相互影响.中国环境科学, 2005, 25(2):133-137. http://www.cnki.com.cn/Article/CJFDTOTAL-ZGHJ200502002.htm
    [15]
    黄健, 吴兑, 黄敏辉, 等.1954-2004年珠江三角洲大气能见度变化趋势.应用气象学报, 2008, 19(1):61-70. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20080111&flag=1
    [16]
    Draxler R.Description of the HYSPLIT-4 Modeling System.NOAA Technical Memo ERL ARL-224, 1997.
    [17]
    Draxler R.Trajectory optimization for balloon flight planning.Wea Forecasting, 1996, 11:111-114. doi:  10.1175/1520-0434(1996)011<0111:TOFBFP>2.0.CO;2
    [18]
    Van der Hoven I.Deposition of Particles and Gases∥Slade D.Meteorology and Atomic Energy.TID-24190, NTIS, Spring-field, VA, 1968:1-445.
    [19]
    Hicks B B.Differences in Wet and Dry Particle Deposition Parameters Between North America and Europe∥Aerosols:Research, Risk Assessment, and Control Strategies, Lewis Publishers, Chelsea, MI, 1986:973-982.
    [20]
    Zannetti P.Air Pollution Modeling.New York:Van Nostrand Reinhold, 1990.
    [21]
    郭昱, 蔡旭晖, 刘辉志, 等.北京地区大气中尺度扩散模态和时间特征分析.北京大学学报 (自然科学版), 2002, 38(5):705-712. http://www.cnki.com.cn/Article/CJFDTOTAL-BJDZ200205021.htm
    [22]
    Kalnay E and Coauthors.The NCEP/NCAR 40-year reanalysis project.Bull Amer Meteor Soc, 1996, 77:437-471. doi:  10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2
    [23]
    颜鹏, 黄健, DraxlerR.周边地区对北京地面SO2影响的初步研究.应用气象学报, 2002, 13(增刊):144-152. http://www.cnki.com.cn/Article/CJFDTOTAL-YYQX2002S1015.htm
    [24]
    Dexheimer D N, Bowman P K.Lagrangian methods for climatologic alanalysis of regional atmospheric transport.J Appl Meteor, 2004, 43:623-630. doi:  10.1175/1520-0450(2004)043<0623:LMFCAO>2.0.CO;2
    [25]
    颜鹏, 黄健, DraxlerR.北京地区SO2污染的长期模拟及不同类型排放源影响的计算与评估.中国科学 (D辑), 2005, 35(增刊):167-176. http://www.cnki.com.cn/Article/CJFDTOTAL-JDXK2005S1016.htm
    [26]
    刘爱君, 杜尧东, 王惠英.广州灰霾天气的气候特征分析.气象, 2004, 30(12):68-71. http://www.cnki.com.cn/Article/CJFDTOTAL-QXXX200412015.htm
    [27]
    江肶, 曹春燕.2003年深圳市灰霾气候特征及影响因素.广东气象, 2004, 4:14-15. http://www.cnki.com.cn/Article/CJFDTOTAL-GDCX200404005.htm
    [28]
    Li F, Ramanathan V.Winter to summer monsoon variation of aerosol optical depth over the tropical Indian Ocean.J Geophys Res, 2002, 107(D16), 4284, doi: 10.1029/2001JD000949.
    [29]
    李成才, 毛节泰, 陈介中, 等.利用MODIS研究中国东部地区气溶胶光学厚度的分布和季节变化特征.科学通报, 2003, 48(19):2094-2100. http://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200319018.htm
    [30]
    Chung K K, ChanJ C L, NgaC N, et al.Synoptic conditions associated with high carbon monoxide episodes at acoastal station in Hong Kong.Atmos Environ, 1999, 33:3087-3095. doi:  10.1016/S1352-2310(97)00328-2
    [31]
    Lam K S, Chan L Y, Wang T, et al.Flow patterns influencing the seasonal behavior of surface ozone and carbon monoxide at a coastal site near Hong Kong.Atmos Environ, 2001, 35:3121-3135. doi:  10.1016/S1352-2310(00)00559-8
    [32]
    陈燕, 蒋维楣, 郭文利, 等.珠江三角洲地区城市群发展对局地大气污染物扩散.环境科学学报, 2005, 25(5):700-710. http://www.cnki.com.cn/Article/CJFDTOTAL-HJXX200505022.htm
    [33]
    戴念军, 谢安, 张勇.南海夏季风活动的年际和年代际特征.气候与环境研究, 2000, 5(4):363-374. http://www.cnki.com.cn/Article/CJFDTOTAL-QHYH200004003.htm
  • 加载中
  • -->

Catalog

    Figures(7)  / Tables(1)

    Article views (3869) PDF downloads(1447) Cited by()
    • Received : 2010-01-02
    • Accepted : 2010-08-16
    • Published : 2010-12-31

    /

    DownLoad:  Full-Size Img  PowerPoint