Kong Qi, Zheng Yongguang, Chen Chunyan. Synoptic scale and mesoscale characteristics of 7·17 Urumqi heavy rainfall in 2007. J Appl Meteor Sci, 2011, 22(1): 12-22.
Citation: Kong Qi, Zheng Yongguang, Chen Chunyan. Synoptic scale and mesoscale characteristics of 7·17 Urumqi heavy rainfall in 2007. J Appl Meteor Sci, 2011, 22(1): 12-22.

Synoptic Scale and Mesoscale Characteristics of 7·17 Urumqi Heavy Rainfall in 2007

  • Received Date: 2010-03-08
  • Rev Recd Date: 2010-07-22
  • Publish Date: 2011-02-28
  • Xinjiang is located in a semi-arid area, but a heavy rainfall event occurs unexpectedly along the Tianshan Mountains in Xinjiang during 13—18 July 2007. The circulation and the persistent mechanism of the low vortex as well as the mesoscale characteristics for the heavy rainfall in Urumqi during 16—17 July 2007 are analyzed and compared with one similar case in the same period of 1996, by use of the 1-hour and 1-minute precipitation data, geostationary satellite images, conventional surface and upper data, NCEP 1°×1° reanalysis data and the new generation Doppler radar data. The results are as follows: The heavy rainfall takes place under the favorable large-scale circumfluence. It is a large scale heavy rainfall which is related to the baroclinic disturbance. The central-Asian vortex is the major influential system, but the location, form and intensity are different from those of the cases in 1996. The atmospheric stratification turns unstable, but it is weaker comparing with the heavy rainfall in the eastern part of China. The characteristics of the stability are different during different rainfall periods, exhibiting the pattern of both stratiform and convective precipitation. The intrusion of the cold and dry air strengthens the instability of the atmosphere, and plays an important role for the heavy rainfall. The long maintenance of the vortex after the landing in Xinjiang is associated with the high PV anomaly (dry and cold air intrusion) in the upper-middle troposphere. Strong moisture convergence develops rapidly at lower level and the water mainly comes from the eastern part of the Tibetan Plateau, western part of Gansu Province and the north of the Southern Xinjiang Basin. The satellite and radar images show that there are obvious meso-γ-scale convective rainy cluster with characteristics of the echo pendency, vertical wind shear, but they are much weaker than those heavy rainfall systems in the east region of China. Radar radial base velocity products reveal that the mesoscale radial convergence may be the important trigger mechanism for the mesoscale convective rain cluster. Compared with the rainfall in eastern China, the rainfall in Xinjiang shows the characteristics of both synoptic scale and mesoscale. The water sources are less abundant and the convergence is more important. The instability of atmospheric stratification is not so strong without obvious low-level jet. The intrusion of the cold and dry air comes from the middle level of the troposphere. The mesoscale convective rainy-clusters have the characteristics of the mesoscale convective clouds, but the convection is not too intense as the cloud top black body temperature of the cloud clusters is not too low, and the vertical height of strong echo is not too high, either.
  • Fig. 1  Rainfall distribution in Xinjiang for 15—18 July 2007 (a) stations of the rainfall exceeding over 10 mm from 08:00 16 July to 08:00 17 July (the shaded denotes the topographic height), (b) the evolution of the rainfall from 00:00 15 July to 00:00 18 July, (c) the evolution of the rainfall at Urumqi in July 2007

    Fig. 2  Flow field of 500 hPa at 20:00 16 July 2007 and FY-2C infrared satellite image at 18:00 16 July 2007 (▲ denotes Urumqi)

    Fig. 3  Meridional cross section along 87°E of the pseudo-potential temperature (solid lines, unit: K) and specific humidity (dashed lines, unit: 10-3 kg·kg-1) at 20:00 16 July 2007(the shaded denotes the topography) (a), time-height evolution of the horizontal wind field and the relative humidity (unit:%) over Urumqi (43.5°N, 87.4°E) during 14—17 July 2007 (b)

    Fig. 4  Temperature advection (unit: 10-5 K·s-1) over Urumqi (43.5°N, 87.4°E) during 15—17 July 2007(a) and vertical cross section of the relative humidity (isolines, unit: %) and v-ω wind (streamlines) fields along 87.4°E at 20:00 16 July 2007 (the shaded denotes the topography) (b)

    Fig. 5  FY-2C water vapor image at 18:00 16 July 2007 and streamlines, the isobar (dot lines, unit: hPa) and the potential vorticity (black solid lines, unit: PVU) at 330 K isentropic surface at 20:00 16 July 2007(▲ denotes Urumqi)

    Fig. 6  Distribution of the horizontal moisture flux at 700 hPa (unit:g·cm-1·s-1·hPa-1) and divergence of moisture flux in the whole layer (gray area, unit: 10-2 g·cm-2·s-1) at 20:00 16 July 2007

    (the black area shows topography more than 3000 m)

    Fig. 7  FY-2C TBB evolution and visible satellite image in July 2007

    (a) FY-2C TBB evolution during 16—17 July (unit: ℃; the black horizontal line denotes the position of Urumqi, the four black vertical lines denote the time that the precipitation per hour exceeding 5 mm) along 87.5°E, (b) enhanced visible satellite image at 18:00 16 July 2007 (▲ denotes Urumqi)

    Fig. 8  Radar images observed at Urumqi for 18:46—18:51 16 July 2007 (a) reflectivity at 1.5° elevation, (b) radial base velocity at 1.5° elevation (the white arrows denote the wind directions), (c) vertical section of reflectivity and radial base velocity (isolines, unit:m·s-1) along the black solid line in Fig. 8a (azimuth: 122°; the shaded denotes topography)

  • [1]
    张家宝, 邓子风.新疆降水概论.北京:气象出版社, 1987: 4-7;89-117.
    [2]
    史玉光, 孙照渤, 杨青.新疆区域面雨量分布特征及其变化规律.应用气象学报, 2008, 19(3): 326-332. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20080354&flag=1
    [3]
    蒋军, 谭艳梅, 李如琦. 2004年7月新疆特大暴雨过程的诊断分析.新疆气象, 2005, 28(4): 4-6. http://www.cnki.com.cn/Article/CJFDTOTAL-XJQX200504002.htm
    [4]
    李霞, 白慧星, 汤浩.新疆"96.7"大暴雨过程中主要天气系统结构的天气动力学分析.新疆气象, 1997, 20(5): 10-12. http://www.cnki.com.cn/Article/CJFDTOTAL-XJQX199705003.htm
    [5]
    王旭, 马禹, 赵兵科, 等.新疆"96.7"特大暴雨水汽输送通道研究.新疆气象, 1999, 22(5): 5-8. http://www.cnki.com.cn/Article/CJFDTOTAL-XJQX199905001.htm
    [6]
    陈永林, 杨引明, 曹晓刚, 等.上海"0185"特大暴雨的中尺度强对流系统活动特征及其环流背景的分析研究.应用气象学报, 2007, 18(1): 29-35. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20070106&flag=1
    [7]
    王瑾, 蒋建莹, 江吉喜. "7.18"济南突发性大暴雨特征.应用气象学报, 2009, 20(3):295-302. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20090305&flag=1
    [8]
    郭虎, 段丽, 杨波, 等. 0679香山局地大暴雨的中小尺度天气分析.应用气象学报, 2008, 19(3):265-275. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20080346&flag=1
    [9]
    何立富, 陈涛, 周庆亮, 等.北京"7.10"暴雨β-中尺度对流系统分析.应用气象学报, 2007, 18(5): 655-665. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=200705100&flag=1
    [10]
    祁秀香, 郑永光. 2007年夏季我国深对流活动时空分布特征.应用气象学报, 2009, 20(3): 286-294. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20090304&flag=1
    [11]
    陶诗言.中国之暴雨.北京:科学出版社, 1980: 7-8.
    [12]
    丁一汇.暴雨和中尺度气象学问题.气象学报, 1994, 52(3):274-284. doi:  10.11676/qxxb1994.036
    [13]
    方宗义, 覃丹宇.暴雨云团的卫星监测和研究进展.应用气象学报, 2006, 17(5): 583-593. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=200605100&flag=1
    [14]
    庄薇, 刘黎平, 王楠.新疆地区一次对流性降水的三维中尺度风场研究.应用气象学报, 2006, 17(4): 444-451. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20060475&flag=1
    [15]
    郑永光, 王洪庆, 陶祖钰, 等. Windows下二维气象绘图软件——客观分析诊断图形系统.气象, 2002, 28(3): 42-45. doi:  10.7519/j.issn.1000-0526.2002.03.009
    [16]
    郑永光, 陈炯, 王洪庆, 等.一个气象数据分析绘图软件的设计与开发.应用气象学报, 2004, 15(4): 506-509. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20040462&flag=1
    [17]
    Kalnay E, Kanamitsu M, Kistler R, et al. The NCAR/NCEP 40-year reanalysis project. Bull Amer Meteor Soc, 1996, 77(3):437-471. doi:  10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2
    [18]
    郑永光, 朱佩君, 白洁, 等. Windows下静止卫星云图处理软件.气象, 2003, 29(6): 16-21. doi:  10.7519/j.issn.1000-0526.2003.06.004
    [19]
    郑永光, 陈炯, 朱佩君.改进的静止卫星云图软件处理系统.气象, 2007, 33(12): 103-109. doi:  10.7519/j.issn.1000-0526.2007.12.016
    [20]
    郑永光, 张春喜, 陈炯, 等.用NCEP资料分析华北暖季对流性天气的气候背景.北京大学学报 (自然科学版), 2007, 43(5): 600-608. http://www.cnki.com.cn/Article/CJFDTOTAL-BDXP200701001.htm
    [21]
    Hoskins B J, McIntyre M E, Robertson A W. On the use and significance of isentropic potential vorticity maps. Q J R Meteorol Soc, 1985, 111: 877-946. doi:  10.1002/qj.49711147002
    [22]
    Santurette P, Georgiev C G. Weather Analysis and Forecasting: Applying Satellite Water Vapor Imagery and Potential Vorticity Analysis. Burlington: Elsevier Academic Press, 2005: 1-13.
    [23]
    丁一汇, 马晓青. 2004/2005年冬季强寒潮事件的等熵位涡分析.气象学报, 2007, 65(5): 695-707. doi:  10.11676/qxxb2007.065
  • 加载中
  • -->

Catalog

    Figures(8)

    Article views (3992) PDF downloads(1600) Cited by()
    • Received : 2010-03-08
    • Accepted : 2010-07-22
    • Published : 2011-02-28

    /

    DownLoad:  Full-Size Img  PowerPoint