Zhang Bo, Zhong Shanshan, Zhao Bin, et al. The influence of the subtropical sea surface temperature over the Western Pacific on spring persistent rains. J Appl Meteor Sci, 2011, 22(1): 57-65.
Citation: Zhang Bo, Zhong Shanshan, Zhao Bin, et al. The influence of the subtropical sea surface temperature over the Western Pacific on spring persistent rains. J Appl Meteor Sci, 2011, 22(1): 57-65.

The Influence of the Subtropical Sea Surface Temperature over the Western Pacific on Spring Persistent Rains

  • Received Date: 2010-02-04
  • Rev Recd Date: 2010-10-19
  • Publish Date: 2011-02-28
  • Using the Community Atmospheric Model Version 3.1 (CAM3.1) provided by National Center for Atmospheric Research (NCAR), the influence of the East Asian subtropical zonal land-sea thermal difference on the spring persistent rains is studied. The results show that the monthly sea surface temperature over the western Pacific (15°—35°N, 120°—150°E) are two months ahead of schedule, the seasonal conversion of the East Asia—the western Pacific subtropical zonal land-sea thermal difference is delayed, and the thermal difference between the East Asia and the western Pacific in spring is decreased. Under this condition, the intensity of the southwest winds at 850 hPa over East China in March and April decreases, and the rainfall over the region to south of 30°N decreases during the period from March to April, the remarkable decreasing periods are mid-March and mid-late April. The result shows that the intensity of spring persistent rains decreases due to the little land-sea thermal difference. The important role of the East Asian subtropical zonal land-sea thermal difference on the spring persistent rains over Southeastern China is verified. As far as the mechanisms are concerned, the results are as follows.When the land-sea thermal difference of subtropical zonal is minished, the intensity of vortex over the southeastern Tibetan Plateau weakens and then the geopotential difference between this vortex and the western Pacific subtropical high minishes. The western Pacific subtropical high over the middle and low latitudes weakens, and the intensity of the southeast wind decreases over the region to north of the western Pacific subtropical high. Therefore, the southeast warm moist airflows decrease and the convergence intensity of the moisture flux divergence weakens. Under this general circulation conditions, there are no heavy spring persistent rains.
  • Fig. 1  Zonal difference of 500 hPa temperature between WPSST and CTL (unit:℃)

    (a) departure between WPSST and CTL over 20°—30°N, (b) difference between regions of 20°—30°N, 80°—120°E and 20°—30°N, 120°—150°E

    Fig. 2  Meridian-time cross section of precipitation intensity (unit:mm·d-1) (a) and wind fields at 850 hPa (vectors:wind direction; shaded areas:wind speed) (b) averaged over 110°—120°E

    Fig. 3  Meridian-time cross section of precipitation intensity averaged over 110°—120°E (unit: mm·d-1) (a) CTL, (b) WPSST, (c) difference between WPSST and CTL

    (shaded areas: passing the test of 0.1 level)

    Fig. 4  Meridian-time cross section of 850 hPa wind fields averaged over 110°—120°E in the east part of China (vectors:wind direction; shaded areas:wind speed) (a) CTL, (b) WPSST

    Fig. 5  850 hPa mean geopotential height fields in March and April (unit: gpm) (dashed line: the topography of 1500 m)(a) CTL, (b) WPSST

    Fig. 6  850 hPa mean wind fields in March and April

    (dashed line: the topography of 1500 m; shaded areas: passing the test of 0.05 level) (a) CTL, (b) WPSST, (c) difference between WPSST and CTL

    Fig. 7  850 hPa mean moisture flux in March and April (unit: 10-5 g·kg-1·s) (dashed line: the topography of 1500 m; shaded areas: passing the test of 0.05 level)

    (a) CTL, (b) WPSST, (c) difference between WPSST and CTL

    Fig. 8  Mean precipitation intensity in March and April (unit: mm·d-1) (dashed line: the topography of 1500 m; shaded areas: passing the test of 0.05 level) (a) CTL, (b) WPSST, (c) difference between WPSST and CTL

  • [1]
    Tao S Y, Chen L X. A Review of Recent Research on the East Asian Summer Monsoon in China//Chang C P, Krishnamurti T N. Monsoon Meteorology. Oxford:Oxford University Press, 1987: 60-92.
    [2]
    Zhu Q G, He J H, Wang P X. A study of circulation differences between East-Asian and Indian summer monsoons with their interaction. Adv Atmos Sci, 1986, 3(4): 466-477. doi:  10.1007/BF02657936
    [3]
    张庆云, 陶诗言.夏季东亚热带和副热带季风与中国东部汛期降水.应用气象学报, 1998, 9(增刊): 17-23. http://www.cnki.com.cn/Article/CJFDTOTAL-YYQX8S1.002.htm
    [4]
    钱永甫, 江静, 张艳, 等.亚洲热带夏季风的首发地区和机理研究.气象学报, 2004, 62(2): 129-139. doi:  10.11676/qxxb2004.015
    [5]
    张艳, 钱永甫.青藏高原地面热源对亚洲季风爆发的热力影响.南京气象学院学报, 2002, 25(3): 298-306. http://www.cnki.com.cn/Article/CJFDTOTAL-NJQX200203001.htm
    [6]
    Zhao P, Zhang R H, Liu J P, et al. Onset of southwesterly wind over eastern China and associated atmospheric circulation and rainfall. Clim Dyn, 2007, 28: 797-811. doi:  10.1007/s00382-006-0212-y
    [7]
    杨明, 徐海明, 李维亮, 等.近40年东亚季风变化特征及其与海陆温差关系.应用气象学报, 2008, 19(5): 522-530. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20080502&flag=1
    [8]
    赵平, 陈军明, 肖栋, 等.夏季亚洲-太平洋涛动与大气环流和季风降水.气象学报, 2008, 66(5): 716-729. doi:  10.11676/qxxb2008.066
    [9]
    袁佳双, 郑庆林.西北太平洋冷海温对东亚初夏大气环流影响的数值研究.应用气象学报, 2006, 17(3): 310-315. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20060355&flag=1
    [10]
    王澄海, 王式功, 杨德保, 等.中国西北春季降水与太平洋海温的相关特征.应用气象学报, 2001, 12(3): 383-384. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20010350&flag=1
    [11]
    林建, 何金海.海温分布型对长江中下游旱涝的影响.应用气象学报, 2000, 11(3): 339-347. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20000350&flag=1
    [12]
    祁莉, 何金海, 张祖强, 等.纬向海陆热力差异的季节转换与东亚副热带季风环流.科学通报, 2007, 52(24): 2895-2899. doi:  10.3321/j.issn:0023-074x.2007.24.013
    [13]
    何金海, 祁莉, 韦晋, 等.关于东亚副热带季风和热带季风的再认识.大气科学, 2007, 31(6): 1257-1265. http://www.cnki.com.cn/Article/CJFDTOTAL-DQXK200706021.htm
    [14]
    李麦村, 潘菊芳, 田生春, 等.春季连续低温阴雨天气的预报方法.北京:科学出版社, 1977: 3-4.
    [15]
    包澄澜.中国天气学.北京:海洋出版社, 1987: 269.
    [16]
    施宁.低纬环流及其低频振荡背景.气象科学, 1991, 11(1): 100-111. http://www.cnki.com.cn/Article/CJFDTOTAL-QXKX199101009.htm
    [17]
    吴宝俊, 彭治班.江南岭北春季连阴雨研究进展.科技通报, 1996, 12(2): 65-70. http://www.cnki.com.cn/Article/CJFDTOTAL-KJTB602.000.htm
    [18]
    陈绍东, 王谦谦, 钱永甫.江南汛期降水基本气候特征及其与海温异常关系初探.热带气象学报, 2003, 19(3): 260-268. http://www.cnki.com.cn/Article/CJFDTOTAL-RDQX200303004.htm
    [19]
    Tian S F, Yasunari T. Climatological aspects and mechanism of spring persistent rains over central China. J Meteor Soc Japan, 1998, 76(1): 57-71. doi:  10.2151/jmsj1965.76.1_57
    [20]
    万日金, 吴国雄.江南春雨的时空分布.气象学报, 2008, 66(3): 310-319. doi:  10.11676/qxxb2008.029
    [21]
    赵平, 周秀骥, 陈隆勋, 等.中国东部-西太平洋副热带季风和降水的气候特征及成因分析.气象学报, 2008, 66(6): 940-954. doi:  10.11676/qxxb2008.085
    [22]
    赵平, 蒋品平, 周秀骥, 等.春季东亚海-陆热力差异对我国东部西南风降水影响数值试验.科学通报, 2009, 54(16): 2372-2378. http://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200916018.htm
    [23]
    Collins W D, Rasch P J, Boville B A, et al. The formulation and atmospheric simulation of the Community Atmosphere Model Version 3 (CAM3). J Climate, 2006, 19(11): 2144-2161. doi:  10.1175/JCLI3760.1
  • 加载中
  • -->

Catalog

    Figures(8)

    Article views (3141) PDF downloads(1699) Cited by()
    • Received : 2010-02-04
    • Accepted : 2010-10-19
    • Published : 2011-02-28

    /

    DownLoad:  Full-Size Img  PowerPoint