Liu Lüliu, Sun Linhai, Liao Yaoming, et al. Prediction of monthly precipitation and number of extreme precipitation days with statistical downscaling methods based on the monthly dynamical climate model. J Appl Meteor Sci, 2011, 22(1): 77-85.
Citation: Liu Lüliu, Sun Linhai, Liao Yaoming, et al. Prediction of monthly precipitation and number of extreme precipitation days with statistical downscaling methods based on the monthly dynamical climate model. J Appl Meteor Sci, 2011, 22(1): 77-85.

Prediction of Monthly Precipitation and Number of Extreme Precipitation Days with Statistical Downscaling Methods Based on the Monthly Dynamical Climate Model

  • Received Date: 2010-03-11
  • Rev Recd Date: 2010-11-24
  • Publish Date: 2011-02-28
  • The prediction of precipitation especially extreme precipitation is important but difficult. Dynamical climate models play important roles in the climate prediction and show good skills in large-scale circulation prediction. However, its prediction skill of daily precipitation is limited on regional or smaller spatial scale. So dynamical or statistical downscaling is developed to provide prediction with high resolution. Statistical downscaling can make full use of the large-scale circulation information with high skill of global climate model, and simulate everyday climate variables on the regional or point scale. It has become a popular method in climate prediction and climate change research.Dynamical Extension Regional Forecast Model (DERF) by National Climate Center, CMA has been used in the climate prediction for nearly ten years. Like other global climate models, it has good skills in predicting circulation fields such as height, wind, and sea level pressure. Optimum subsets regression (OSR) is used to predict precipitation anomaly at 133 stations in China for 6 periods (1—10 days, 11—20 days, 21—30 days, 31—40 days, 1—30 days, 11—40 days) using geopotential height, zonal wind, meridional wind and sea level pressure as predictors by DERF. The OSR models are verified with cross validation method using data from 1982 to 2006. Five operational sores (Ratc, CLTc, P, ACC and TS) are compared with the results directly forecasted by DERF. The results show that OSR can improve prediction skill to different extents, especially for 11—40 days. Then two statistical downscaling methods are used to predict number of extreme precipitation days. One is predicting directly as predictant with OSR method using large circulations from DERF as predictors (named as 1-step method), which is similar to precipitation anomaly prediction. The other one is to compute the day number using simulation results of weather generator (WG) under the condition of precipitation anomaly predicted by OSR downscaling (named as 2-step method). Random prediction is compared with the two methods. Crossing verification from 1982 to 2006 show that the predict skill of the two statistical methods is better than that of random prediction. The skill of 2-step method is better than 1-step method to predict number of extreme precipitation days in winter, but worse in summer. It can be concluded that the methods of OSR and combination of OSR and WG have high skill to predict precipitation and number of extreme precipitation days. The prediction information can provide important information for short-range climatic prediction.
  • Fig. 1  Location of climate stations

    Fig. 2  Scheme of predictor selection

    Fig. 3  Crossing validation of precipiation anomaly pertange for 5 kinds of operational scores

    Fig. 4  Abnormal class score of crossing validation for day number with extreme precipiation

    Table  1  Description of predictants and predictors

    预报量 方法名称 方法描述
    降水量 方法1
    方法2
    OSR统计降尺度
    模式直接预测
    极端降水日数 方法3
    方法4
    方法5
    一步法
    两步法
    WG随机预测
    DownLoad: Download CSV

    Table  2  Classification of number of extreme precipitation days

    分级文字描述 分级量化描述 分级标准
    特多 3 >1.0σ
    偏多 2 0.3σ~1.0σ
    正常略多 1 0~0.3σ
    正常略少 -1 -0.3σ~0
    偏少 -2 -1.0σ~-0.3σ
    特少 -3 < -1.0σ
    DownLoad: Download CSV

    Table  3  Abnormal class score

    观测与预测异常级之差 0 -1或1 -2或2 -3或3 -4或4 -5或5 -6或6
    评分 100 80 60 40 20 0 0
    DownLoad: Download CSV

    Table  4  P score for monthly precipiation anomaly percentange predicted on the first day of a month during summer and winter in 2007 and 2008

    起测日期 预测时段/d OSR统计降尺度 模式直接预测
    2007年 2008年 2007年 2008年
    12-01 1~3011~40 6569* 7070* 6755 8169
    01-01 1~3011~40 6970 7285* 7074 7865
    02-01 1~3011~40 84*91* 80*77* 5655 7055
    06-01 1~3011~40 70*69* 65*77* 5451 5245
    07-01 1~3011~40 70*64* 5771* 5750 5949
    08-01 1~3011~40 71*76* 7376* 4349 7463
    注:*表明OSR统计降尺度预测技巧高于模式直接预测。
    DownLoad: Download CSV

    Table  5  Abnomal class score for day number with extreme precipiation predicted on the first day of a month during summer and winter averaged of 2007 and 2008

    起测日期 12-01 01-01 02-01 06-01 07-01 08-01
    预测时段/d 1~30 11~40 1~30 11~40 1~30 11~40 1~30 11~40 1~30 11~40 1~30 11~40
    两步法 58 57 66 65 65 61 62 56 64 56 61 52
    一步法 38 28 33 22 40 29 39 18 35 24 41 28
    DownLoad: Download CSV
  • [1]
    贾燕.基于EOF分析辽宁省极端气温时空分布的研究.安徽农业科学, 2008, 36(11): 4589-4590; 4620. doi:  10.3969/j.issn.0517-6611.2008.11.098
    [2]
    余卫东, 柳俊高, 常军, 等. 1957—2005年河南省降水和温度极端事件变化.气候变化研究进展, 2008, 4(2): 78-83. http://www.cnki.com.cn/Article/CJFDTOTAL-QHBH200802008.htm
    [3]
    蔡敏, 丁裕国, 江志红.我国东部极端降水时空分布及其概率特征.高原气象, 2007, 26 (2):309-318. http://www.cnki.com.cn/Article/CJFDTOTAL-GYQX200702012.htm
    [4]
    翟盘茂, 任福民, 张强.中国降水极值变化趋势检验.气象学报, 1999, 57(2): 208-216. doi:  10.11676/qxxb1999.019
    [5]
    任福民, 翟盘茂. 1951—1990年中国极端气温变化分析.大气科学, 1998, 22(1): 217-226. http://www.cnki.com.cn/Article/CJFDTOTAL-DQXK802.009.htm
    [6]
    Good P, Bärring L C, Giannakopoulos C, et al. Non-linear regional relationships between climate extremes and annual mean temperatures in model projections for 1961—2099 over Europe. Climate Research, 2006, 31: 19-34. doi:  10.3354/cr031019
    [7]
    Maheras P, Flocas H, Tolika K, et al. Circulation types and extreme temperature changes in Greece. Climate Research, 2006, 30: 161-174. doi:  10.3354/cr030161
    [8]
    江志红, 丁裕国, 蔡敏.未来极端降水对气候平均变暖敏感性的蒙特卡罗模拟试验.气象学报, 2009, 67(2): 272-279. doi:  10.11676/qxxb2009.027
    [9]
    张培群, 李清泉, 王兰宁, 等.我国动力气候模式预测系统的研制及应用.科技导报, 2004(7):17-21. http://www.cnki.com.cn/Article/CJFDTOTAL-KJDB200407005.htm
    [10]
    李维京, 张培群, 李清泉, 等.动力气候模式预测系统业务化及其应用.应用气象学报, 2005, 16(增刊): 1-11. http://kns.cnki.net/KCMS/detail/detail.aspx?dbcode=CJFQ&dbname=CJFD2005&filename=YYQX2005S1000&v=MTc4OTVGWklSOGVYMUx1eFlTN0RoMVQzcVRyV00xRnJDVVJMMmZZdWR1RnlyZ1ZyL0JQRFRhZHJHNEh0U3Zybzk=
    [11]
    林纾, 陈丽娟, 陈彦山, 等.月动力延伸预报产品在西北地区月降水预测中的释用.应用气象学报, 2007, 18(4): 555-560. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20070486&flag=1
    [12]
    严小冬, 吴战平, 马振锋, 等. Downscaling法在贵州冬季气温和降水预测中的应用.高原气象, 2008, 27(1): 169-175. http://www.cnki.com.cn/Article/CJFDTOTAL-GYQX200801020.htm
    [13]
    顾伟宗, 陈丽娟, 张培群, 等.基于月动力延伸预报最优信息的中国降水降尺度预测模型.气象学报, 2009, 67(2): 280-287. doi:  10.11676/qxxb2009.028
    [14]
    池俊成, 史印山. EOF迭代模型的月动力延伸预报产品释用技术.应用气象学报, 2009, 20(1): 124-128. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20090117&flag=1
    [15]
    陈丽娟, 李维京, 张培群, 等.降尺度技术在月降水预报中的应用.应用气象学报, 2003, 14(6): 648-655. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20030682&flag=1
    [16]
    Semenov M A. Simulation of extreme weather events by a stochastic weather generator. Climate Research, 2007, 35: 203-212. http://www.int-res.com/articles/cr2007/35/c035p203.pdf
    [17]
    廖要明, 张强, 陈德亮.中国天气发生器的降水模拟.地理学报, 2004, 59(5): 689-698. doi:  10.11821/xb200405006
    [18]
    Kalney E, Kanamitsu M, Kistler R, et al. The NCEP/ NCAR 40-year reanalysis project. Bull Amer Meteor Soc, 1996, 77: 437-471. doi:  10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2
    [19]
    范丽军, 符淙斌, 陈德亮.统计降尺度法对华北地区未来区域气温变化情景的预估.大气科学, 2007, 31(5):887-897. http://www.cnki.com.cn/Article/CJFDTOTAL-DQXK200705011.htm
    [20]
    Hessami M, Gachon P, Ouarda T B, et al. Automated regression-based statistical downscaling tool. Environmental Modelling & Software, 2008, 23: 813-814. https://www.researchgate.net/profile/Andre_St-Hilaire/publication/222908519_Automated_regression-based_Statistical_Downscaling_Tool/links/02bfe50f1d995212cf000000.pdf?origin=publication_list
    [21]
    Semenov M A. Use of a stochastic weather generator in the development of climate change scenarios. Climatic Change, 1997, 35: 397-414. doi:  10.1023/A:1005342632279
    [22]
    Semenov M A. Simulation of extreme weather events by a stochastic weather generator. Climate Research, 2007, 35: 203-212. http://www.int-res.com/articles/cr2007/35/c035p203.pdf
    [23]
    Jan K, Martin D. Simulation of extreme temperature events by a stochastic weather generator: Effects of interdiurnal and interannual variability reproduction. International Journal of Climatology, 2005, 25:251-269. doi:  10.1002/joc.v25:2
    [24]
    Schuol J, Abbaspour K C. Using monthly weather statistics to generate daily data in a SWAT model application to West Africa. Ecological Modelling, 2007, 201: 301-311. doi:  10.1016/j.ecolmodel.2006.09.028
    [25]
    刘绿柳, 孙林海, 廖要明, 等.国家级极端高温短期气候预测系统的研制和应用.气象, 2008, 34(10): 102-107. doi:  10.7519/j.issn.1000-0526.2008.10.014
    [26]
    陈桂英, 赵振国.短期气候预测评估和业务系统初估.应用气象学报, 1998, 9(2):178-185. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=19980225&flag=1
  • 加载中
  • -->

Catalog

    Figures(4)  / Tables(5)

    Article views (4424) PDF downloads(1322) Cited by()
    • Received : 2010-03-11
    • Accepted : 2010-11-24
    • Published : 2011-02-28

    /

    DownLoad:  Full-Size Img  PowerPoint