Yang Su, Shi Guangyu, Wang Biao, et al. The application of AOD's spectral curve parameter to judgment of aerosol particle size. J Appl Meteor Sci, 2011, 22(2): 152-157.
Citation: Yang Su, Shi Guangyu, Wang Biao, et al. The application of AOD's spectral curve parameter to judgment of aerosol particle size. J Appl Meteor Sci, 2011, 22(2): 152-157.

The Application of AOD's Spectral Curve Parameter to Judgment of Aerosol Particle Size

  • Received Date: 2010-03-25
  • Rev Recd Date: 2010-12-06
  • Publish Date: 2011-04-30
  • Aerosols play important roles in earth's climate system by scattering and absorbing radiance and changing surface radiation budge, so they are recognized as one of the most important factors inducing global dimming during 1960 to 1990. On the other side, aerosols can also act as cloud condensation nuclei, changing the optical and micro-physical property, altering hydrological cycle. The aerosol particle size is an important factor which could determine the aerosol physical and optical characteristic, so the knowledge of the particle size information is an urgent and necessary job for aerosol research. Angstrom exponent (α) is a convenient parameter for describing particle size, in general, as α < 1.0, it means coarse particle is dominant; as α > 1.0, it means fine particle is dominant. However, this application is based on Angstrom power law which is just valid for the Junge size distribution, not suitable for all environments and locations. Improper application would introduce considerable uncertainty and lead to misunderstanding. Fortunately, previous measurements note that when the aerosol doesn't meet Junge size distribution, the Angstrom exponent would vary with wavelength, and the spectral curvature of the Angstrom exponent (a2, a1) is useful for describing particle size. Analysis is conducted to find the relationship between these parameter and particle size based on Aeronet Level 2.0 data from Beijing, Taihu, Xinglong, Xianghe sites. The data contain 440 nm, 675 nm, 870 nm, 1020 nm AODs, and particle volume concentration, the data temporal series of each site is more than one year, α, a2, a1 are derived by least square method. The results show that although the aerosol is mixed by fine and coarse particle sometimes, α is still larger than 1.5 which indicate that aerosol mainly consists of fine particle in typical Angstrom law. Correspondingly, median α (0.8 < α < 1.2) also appears for fine particle condition at which α should be larger than 1.2 in typical Angstrom law. On the other side, when α is less than 0.75, the aerosol is dominated by coarse particle certainly which is in accord with Angstrom law. It means that α is a good particle size indicator for coarse particle but not for all conditions. Although a2, a1 contain particle size information, they are not sufficient for describing particle size just by themselves, they could be nice complement to α. There is significant relationship between particle size and α, a2, a1, when α > 0.75, a2 < -0.5 or a2 < -0.5, a1 < -1.0, it means that aerosol is dominated by fine particle (Vfine/Vtotal > 0.7); when α < 0.75 or a2 > -0.25, a1 > -1.0, it means that aerosol is dominated by coarse particle (Vfine/Vtotal < 0.2). It has been proposed that a2-a1 is a first approximation of α, which could also be a good particle size indicator. But the examination shows that a2-a1 does not perform as well as expected, especially when 1 < a2-a1 < 2, the particle size is very complicated, thus a2-a1 provides no assistance to judgment.
  • Fig. 1  Volume fraction of fine mode aerosols as a function of coefficients a2 and a1 for Beijing, Xianghe, Taihu and Xinglong sites

    Fig. 2  Volume fraction of fine mode aerosols as a function of coefficients a2 and α for Beijing, Xianghe, Taihu and Xinglong sites

  • [1]
    IPCC. The Physical Science Basis: Contribution of Working Group Ⅰ to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press, 2007.
    [2]
    赵春生, 彭大勇, 段英.海盐气溶胶和硫酸盐气溶胶在云微物理过程中的作用.应用气象学报, 2005, 16(4): 417-425. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20050452&flag=1
    [3]
    田华, 马建中, 李维亮, 等.中国中东部地区硫酸盐气溶胶直接辐射强迫及气候效应的数值模拟.应用气象学报, 2005, 16(3): 322-333. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20050341&flag=1
    [4]
    李树, 王体健, 谢旻, 等.无机盐热力学平衡模式的简化及其应用.应用气象学报, 2010, 21(2): 189-94. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20100112&flag=1
    [5]
    Eck T F, Holben B N, Reid J S, et al. Wavelength dependence of the optical depth of biomass burning, urban, and desert dust aerosols. J Geophys Res, 1999, 104(D24): 31333-31349. doi:  10.1029/1999JD900923
    [6]
    Reid J S, Hobbs P V. Physical and optical properties of young smoke from individual biomass fires in Brazil. J Geophys Res, 1998, 103(D24): 32013-32030. doi:  10.1029/98JD00159
    [7]
    Reid J S, Hobbs P V, Ferek R J, et al. Physical, chemical, and optical properties of regional hazes dominated by smoke in Brazil. J Geophys Res, 1998, 103(D24): 32059-32080. doi:  10.1029/98JD00458
    [8]
    Remer L A, Kaufman Y J, Holben B N, et al. Biomass burning aerosol size distribution and modeled optical properties. J Geophys Res, 1998, 103(D24): 31879-31891. doi:  10.1029/98JD00271
    [9]
    Hoppel W A, Fitzgerald J W, Frick G M, et al. Aerosol size distributions and optical-properties found in the marine boundary-layer over the Atlantic-Ocean. J Geophys Res, 1990, 95(D4): 3659-3686. doi:  10.1029/JD095iD04p03659
    [10]
    Kavouras I G, Mihalopoulos N, Stephanou E G. Formation of atmospheric particles from organic acids produced by forests. Nature, 1998, 395(6703): 683-686. doi:  10.1038/27179
    [11]
    Russell P B, Livingston J M, Dutton E G, et al. Pinatubo and pre-pinatubo optical-depth spectra-Mauna-Loa measurements, comparisons, inferred particle-size distributions, radiative effects, and relationship to lidar data. J Geophys Res, 1993, 98(D12): 22969-22985. doi:  10.1029/93JD02308
    [12]
    Dalmeida G A. On the variability of desert aerosol radiative characteristics. J Geophys Res, 1987, 92(D3): 3017-3026. doi:  10.1029/JD092iD03p03017
    [13]
    王开存, 李维亮, 白立杰. 1984~2000年印度洋与中国地区上空对流层中上层及平流层气溶胶变化和输送特征.应用气象学报, 2004, 15(1): 32-40. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20040104&flag=1
    [14]
    Remer L A, Kaufman Y J. Dynamic aerosol model: Urban/Industrial aerosol. J Geophys Res, 1998, 103(D12): 13859-13871. doi:  10.1029/98JD00994
    [15]
    Kaufman Y J, Smirnov A, Holben B N, et al. Baseline maritime aerosol: Methodology to derive the optical thickness and scattering properties. Geophys Res Lett, 2001, 28(17): 3251-3254. doi:  10.1029/2001GL013312
    [16]
    王跃思, 辛金元, 李占清, 等.中国地区大气气溶胶光学厚度与Angstrom参数联网观测 (2004-08~2004-12).环境科学, 2006(9): 1703-1711. http://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ200609001.htm
    [17]
    田文寿, 黄陈.兰州西固地区冬季太阳辐射与大气浑浊度.高原气象, 1995, 14(4): 459-466. http://www.cnki.com.cn/Article/CJFDTOTAL-GYQX504.009.htm
    [18]
    Nakajima T, Higurashi A. A use of two-channel radiances for an aerosol characterization from space. Geophys Res Lett, 1998, 25(20): 3815-3818. doi:  10.1029/98GL02151
    [19]
    Angstrom A. On the atmospheric transmission of sun radiation and on dust in the air. Geografiska Annaler, 1929: 156-166. https://www.researchgate.net/publication/235289311_On_the_Atmospheric_Transmission_of_Sun_Radiation_and_on_Dust_in_the_Air
    [20]
    Angstrom A. The parameters of atmospheric turbidity. Tellus, 1964, 16(1): 64-75. doi:  10.3402/tellusa.v16i1.8885
    [21]
    Junge C. The size distribution and aging of natural aerosols as determined from electrical and optical data on the atmosphere. J Meteor, 1955, 12(1): 13-25. doi:  10.1175/1520-0469(1955)012<0013:TSDAAO>2.0.CO;2
    [22]
    Bilbro J W. Review of laser remote-sensing. Bull Amer Meteor Soc, 1984, 65(9): 990.
    [23]
    Eck T F, Holben B N, Dubovik O, et al. Column-integrated aerosol optical properties over the Maldives during the northeast monsoon for 1998-2000. J Geophys Res, 2001, 106(D22): 28555-28566. doi:  10.1029/2001JD000786
    [24]
    Hess M, Koepke P, Schult I. Optical properties of aerosols and clouds: The software package OPAC. Bull Amer Meteor Soc, 1998, 79(5): 831-844. doi:  10.1175/1520-0477(1998)079<0831:OPOAAC>2.0.CO;2
    [25]
    O'Neill N T, Dubovik O, and Eck T F. Modified angstrom ngstrom exponent for the characterization of submicrometer aerosols. Appl Opt, 2001, 40(15): 2368-2375. doi:  10.1364/AO.40.002368
    [26]
    O'Neill N T, Eck T F, Holben B N, et al. Bimodal size distribution influences on the variation of Angstrom derivatives in spectral and optical depth space. J Geophys Res, 2001, 106(D9): 9787-9806. doi:  10.1029/2000JD900245
    [27]
    O'Neill N T, Eck T F, Smirnov A, et al. Spectral discrimination of coarse and fine mode optical depth. J Geophys Res, 2003, 108(D17): 4559-4573. doi:  10.1029/2002JD002975
    [28]
    Kedia S, Ramachandran S. Variability in aerosol optical and physical characteristics over the Bay of Bengal and the Arabian Sea deduced from Angstrom exponents. J Geophys Res, 2009, 114, D14207, doi: 10.1029/2009JD011950.
    [29]
    Schuster G L, Dubovik O, Holben B N. Angstrom exponent and bimodal aerosol size distributions. J Geophys Res, 2006, 111(D7): D07207. https://www.mendeley.com/research-papers/angstrom-exponent-bimodal-aerosol-size-distributions/
    [30]
    杨志峰, 张小曳, 车慧正, 等. CE318型太阳光度计标定方法初探.应用气象学报, 2008, 19(3): 297-306. doi:  10.11898/1001-7313.20080305
    [31]
    Dubovik O, King M D. A flexible inversion algorithm for retrieval of aerosol optical properties from sun and sky radiance measurements. J Geophys Res, 2000, 105(D16): 20673-20696. doi:  10.1029/2000JD900282
    [32]
    Dubovik O, Smirnov A, Holben B N, et al. Accuracy assessments of aerosol optical properties retrieved from Aerosol Robotic Network (AERONET) sun and sky radiance measurements. J Geophys Res, 2000, 105(D8): 9791-9806. doi:  10.1029/2000JD900040
    [33]
    Tanré D, Kaufman Y J, Holben B N, et al. Climatology of dust aerosol size distribution and optical properties derived from remotely sensed data in the solar spectrum. J Geophys Res, 2001, 106(D16): 18205-18217. doi:  10.1029/2000JD900663
    [34]
    Dubovik O, Holben B N, Eck T F, et al. Variability of absorption and optical properties of key aerosol types observed in worldwide locations. J Atmos Sci, 2002, 59(3): 590-608. doi:  10.1175/1520-0469(2002)059<0590:VOAAOP>2.0.CO;2
  • 加载中
  • -->

Catalog

    Figures(2)

    Article views (4136) PDF downloads(3057) Cited by()
    • Received : 2010-03-25
    • Accepted : 2010-12-06
    • Published : 2011-04-30

    /

    DownLoad:  Full-Size Img  PowerPoint