Yu Min, Wang Chunli. Satellite remote sensing drought monitoring methods based on different biophysical indicators. J Appl Meteor Sci, 2011, 22(2): 221-231.
Citation: Yu Min, Wang Chunli. Satellite remote sensing drought monitoring methods based on different biophysical indicators. J Appl Meteor Sci, 2011, 22(2): 221-231.

Satellite Remote Sensing Drought Monitoring Methods Based on Different Biophysical Indicators

  • Received Date: 2010-08-31
  • Rev Recd Date: 2010-12-24
  • Publish Date: 2011-04-30
  • As a frequent natural hazard, drought causes the heaviest damage to daily life and ecological environment among all natural disasters. The large scale and dynamic drought monitoring has been frontier and hot topic in the global climate change and food security research. Satellite remote sensing is the main method of obtaining distributed information of the land surface. However, the applicability of a drought monitoring method varies by region and period. So it's necessary to inspect and evaluate the drought monitoring method to ensure the validity and accuracy in drought monitoring.Vegetation index based IVC, land surface temperature based and Surface Temperature-Normalized Difference Vegetation Index space (Ts-INDV space) based are compared to analyze and evaluate their characteristics and applicability in drought monitoring. The MODIS 16-day NDVI (MOD13A2) and 8-day Ts (MOD11A2) provided at 1 km spatial resolution as a gridded level-3 product in the Sinusoidal projection are used, and the Heilongjiang Province, the main food production area in China, is chosen as the study area. The monitoring period is from 9 May to 9 June of the year 2000 to 2008. The correlation between IVC, ITC, IVTC and relative soil moisture in 10 cm and 20 cm depth, the correlation between IVC, ITC, IVTC and the precipitation in the satellite monitoring period and the cumulative precipitation in the last 1-, 2-, 3-, 4-period time scales, the difference and the relationship between IVC, ITC, IVTC are analyzed.Significant linear correlation is found between IVTC and the relative soil moisture in 10 cm and 20 cm depth, especially for the 10 cm depth. The correlation between IVTC and relative soil moisture is obviously better than that between ITC, IVC and the relative soil moisture. So, it can be judged that IVTC may mirror the soil moisture better than IVC and ITC, and is more sensitive to shallow soil moisture. IVTC is also found linearly correlated with precipitation in current monitoring period, as well as the cumulative precipitation in the last 1-, 2-, 3-, 4-period timescales. The correlations are better than those between ITC, IVC and precipitation as well as corresponding cumulative precipitation, which show that IVTC is more sensitive to precipitation than IVC and ITC, and is closely related to not only current precipitation but also past cumulative precipitation. In the early growing season, IVTC and ITC are applicable in drought monitoring, while the fractional IVC cover is too low to monitor drought. It is difficult to compare the drought among different areas with IVC and ITC, while based on the energy conservation principle, combining the INDV and Ts, IVTC can reflect soil moisture better and is comparable in different areas. Furthermore, the land surface temperature implied by IVTC gives more direct hint of drought than the INDV implied especially on the grassland, then in the crop land, brush land and forest land in sequence.
  • Fig. 1  The definition of IVTC[27, 30]

    Fig. 2  The spatial distribution of IVC(a), ITC(b), IVTC (c) in the period 129 in 2004 (the white area is the water or the invalid value)

    Fig. 3  The spatial distribution of IVC(a), ITC(b), IVTC(c) in the period 145 in 2004 (the white area is the water or the invalid value)

    Fig. 4  The scatters plot of IVC, ITC, IVTC in the period 129 in 2004 (R is the correlation coefficent)

    (a) the whole study area, (b) forest, (c) crop, (d) grass, (e) shrub

    Fig. 5  The scatters plot of IVC, ITC, IVTC in the period 145 in 2004 (R is the correlation coefficent)

    (a) the whole study area, (b) forest, (c) crop, (d) grass, (e) shrub

    Table  1  The correlation between ITC, IVC, IVTC and soil relative moisture in the period 129

    年份
    (样本数)
    指数 10 cm土壤相对湿度 20 cm土壤相对湿度
    2000
    (49)
    ITC 0.149 0.203
    IVC 0.238* 0.111
    IVTC 0.290*** 0.170
    2001
    (61)
    ITC -0.051 -0.048
    IVC 0.185 0.178
    IVTC 0.257** 0.210
    2002
    (62)
    ITC 0.049 0.129
    IVC -0.040* -0.101
    IVTC 0.139 0.177
    2003
    (67)
    ITC -0.039 -0.165
    IVC -0.081 -0.107
    IVTC 0.222* 0.169
    2004
    (68)
    ITC 0.129 0.084
    IVC 0.002 -0.098
    IVTC 0.386**** 0.338***
    2005
    (66)
    ITC 0.300*** 0.194*
    IVC -0.101 -0.160
    IVTC 0.330*** 0.248**
    2006
    (64)
    ITC -0.166 -0.021
    IVC 0.220* 0.022
    IVTC 0.279** 0.241**
    2007
    (69)
    ITC -0.217 -0.176
    IVC 0.055 0.021
    IVTC 0.283** 0.253*
    2008
    (71)
    ITC 0.461***** 0.398****
    IVC -0.084 -0.015
    IVTC 0.467***** 0.430*****
     注:*****,****,***,**,*分别代表相关性通过0.001,0.01,0.02,0.05,0.1的显著性检验。
    DownLoad: Download CSV

    Table  2  The correlation between ITC, IVC, IVTC and soil relative moisture in the period 145

    年份
    (样本数)
    指数 10 cm土壤相对湿度 20 cm土壤相对湿度
    2000
    (43)
    ITC 0.305** 0.165
    IVC -0.302 0.144
    IVTC 0.435**** 0.294**
    2001
    (65)
    ITC 0.233** 0.037
    IVC 0.109 0.037
    IVTC 0.264** 0.189
    2002
    (60)
    ITC 0.132 0.119
    IVC 0.232 0.298
    IVTC 0.323** 0.319**
    2003
    (67)
    ITC 0.087 -0.165
    IVC -0.082 0.011
    IVTC 0.251** 0.160
    2004
    (68)
    ITC 0.198* 0.191
    IVC 0.213* 0.198*
    IVTC 0.366**** 0.292***
    2005
    (61)
    ITC 0.064 -0.045
    IVC -0.233 -0.160
    IVTC 0.292 0.111
    2006
    (72)
    ITC 0.037 -0.089
    IVC 0.093 0.022
    IVTC 0.117 0.175
    2007
    (70)
    ITC 0.099 0.148
    IVC -0.235 0.021
    IVTC 0.451***** 0.432*****
    2008
    (71)
    ITC 0.072 0.024
    IVC 0.353***** 0.354*****
    IVTC 0.306**** 0.331****
     注:*****,****,***,**,*分别代表相关性通过0.001,0.01,0.02,0.05,0.1的显著性检验。
    DownLoad: Download CSV

    Table  3  The correlation between ITC, IVC, IVTC and precipitation in the period 129

    年份 指数 超前时段
    0 1 2 3 4
    2000 ITC 0.336 0.394 0.460 0.430 0.439
    IVC 0.179 0.206 0.181 0.180 0.151
    IVTC 0.504 0.551 0.539 0.568 0.568
    2001 ITC 0.256 0.160 0.130 0.095 0.079
    IVC 0.117 0.302 0.299 0.265 0.261
    IVTC 0.495 0.428 0.398 0.437 0.433
    2002 ITC 0.234 0.176 0.166 0.366 0.322
    IVC 0.346 0.296 0.528 0.487 0.481
    IVTC 0.246 0.258 0.343 0.181 0.228
    2003 ITC 0.229 0.200 0.141 0.089 0.116
    IVC 0.100 0.044 -0.060 -0.080 -0.090
    IVTC 0.165 0.232 0.231 0.213 0.213
    2004 ITC -0.090 0.039 0.028 0.050 0.068
    IVC -0.157 -0.095 -0.111 -0.139 -0.142
    IVTC 0.320 0.427 0.443 0.498 0.501
    2005 ITC 0.603 0.582 0.523 0.548 0.527
    IVC -0.022 -0.066 -0.035 -0.011 -0.002
    IVTC 0.679 0.536 0.474 0.493 0.495
    2006 ITC 0.125 0.125 0.062 0.032 0.030
    IVC 0.149 0.295 0.278 0.263 0.256
    IVTC 0.361 0.349 0.368 0.382 0.381
    2007 ITC 0.160 0.059 0.185 0.189 0.200
    IVC -0.010 0.055 0.071 0.112 0.095
    IVTC 0.239 0.277 0.081 0.011 -0.016
    2008 ITC 0.375 0.580 0.564 0.565 0.541
    IVC -0.200 -0.169 -0.128 -0.103 -0.115
    IVTC 0.371 0.501 0.465 0.432 0.432
    DownLoad: Download CSV

    Table  4  The correlation between ITC, IVC, IVTC and precipitation in the period 145

    年份 指数 超前时段
    0 1 2 3 4
    2000 ITC 0.202 0.430 0.432 0.375 0.400
    IVC -0.381 -0.292 -0.265 -0.249 -0.272
    IVTC 0.375 0.629 0.622 0.617 0.622
    2001 ITC 0.276 0.334 0.389 0.387 0.430
    IVC 0.285 0.340 0.417 0.384 0.360
    IVTC 0.480 0.594 0.546 0.514 0.508
    2002 ITC 0.125 0.162 0.189 0.152 0.087
    IVC 0.130 0.126 0.151 0.159 0.175
    IVTC 0.288 0.271 0.342 0.307 0.190
    2003 ITC 0.091 0.141 0.157 0.213 0.255
    IVC -0.023 -0.077 -0.100 -0.166 -0.180
    IVTC 0.174 0.209 0.259 0.329 0.375
    2004 ITC 0.326 0.462 0.444 0.481 0.503
    IVC 0.214 0.384 0.308 0.280 0.313
    IVTC 0.549 0.628 0.642 0.690 0.673
    2005 ITC 0.643 0.529 0.454 0.420 0.403
    IVC 0.204 0.197 0.242 0.209 0.213
    IVTC 0.464 0.412 0.372 0.339 0.337
    2006 ITC 0.118 0.086 0.006 0.028 -0.010
    IVC -0.110 -0.090 0.004 0.002 0.027
    IVTC 0.006 0.154 0.255 0.273 0.267
    2007 ITC 0.100 0.263 0.229 0.267 0.266
    IVC -0.163 -0.112 -0.110 -0.068 -0.108
    IVTC 0.503 0.577 0.568 0.507 0.489
    2008 ITC -0.263 -0.227 -0.063 -0.055 -0.026
    IVC -0.100 -0.020 0.112 0.104 0.075
    IVTC 0.137 0.220 0.308 0.316 0.326
    DownLoad: Download CSV
  • [1]
    马柱国.我国北方干湿演变规律及其与区域增暖的可能联系.地球物理学报, 2005, 48(5):1011-1018. http://www.cnki.com.cn/Article/CJFDTOTAL-DQWX200505005.htm
    [2]
    邹旭恺, 张强.近半个世纪我国干旱变化的初步研究.应用气象学报, 2008, 19(6): 679-686. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20080607&flag=1
    [3]
    卫捷, 张庆云, 陶诗言.近20年华北地区干旱期大气环流异常特征.应用气象学报, 2003, 14(2):140-151. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20030219&flag=1
    [4]
    王志伟, 翟盘茂.中国北方近50年干旱变化特征.地理学报, 2003, 58(增刊):61-68. http://www.cnki.com.cn/Article/CJFDTOTAL-DLXB2003S1006.htm
    [5]
    Townshend J R G, Justice C O. Analysis of the dynamics of African vegetation using the normalized difference vegetation index. Int J Remote Sens, 1986, 7: 1555-1570. doi:  10.1080/01431168608948953
    [6]
    Holben B N. Characteristics of maximum-value composite images from temporal AVHRR data. Int J Remote Sens, 1986, 7:1395-1416. doi:  10.1080/01431168608948944
    [7]
    Gutman G G. Review of the workshop on the use of satellite derived vegetation indices in weather and climate prediction model. Bull Amer Meteor Soc, 1990, 71: 1458-1463. http://lcluc.umd.edu/documents/gutman-g-1990-review-workshop-use-satellitederived-vegetation-indices-weather-and-climate
    [8]
    Guttman N B. Accepting the standardized precipitation index: A calculation algorithm. Journal of the American Water Resources Association, 1999, 35: 311-322. doi:  10.1111/jawr.1999.35.issue-2
    [9]
    Goward S N, Dye D G, Turner S, et al. Objective assessment of the NOAA global vegetation index data product. Int J Remote Sens, 1993, 14: 3365-3394. doi:  10.1080/01431169308904453
    [10]
    Philippon N, Jarlan L, Martiny N, et al. Characterization of the interannual and intraseasonal variability of west African vegetation between 1982 and 2002 by means of NOAA AVHRR NDVI data. J Climate, 2007, 20(4): 1202-1218. http://www.academia.edu/12648012/Characterization_of_the_Interannual_and_Intraseasonal_Variability_of_West_African_Vegetation_between_1982_and_2002_by_Means_of_NOAA_AVHRR_NDVI_Data
    [11]
    王开存, 陈长和, 郭铌.用NOAA/AVHRR探测地表反射率和NDVI的订正及误差分析.应用气象学报, 2003, 14(2):165-175. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20030221&flag=1
    [12]
    陈燕丽, 龙步菊, 潘学标, 等.基于MODIS NDVI和气候信息的草原植被变化监测.应用气象学报, 2010, 21(2):229-236. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20100213&flag=1
    [13]
    王晓云, 郭文利, 奚文, 等.利用"3S"技术进行北京地区土壤水分监测应用技术研究.应用气象学报, 2002, 13(4):422-429. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20020457&flag=1
    [14]
    Mcvicar T R, Jupp D L B, Yang X, et al. Linking Regional Water Balance Models with Remote Sensing//Proceedings of the 13th Asian Conference on Remote Sensing. Ulaanbaatar, Mongolia, 1992:B6.1-6.6.
    [15]
    McVicar T R, Bierwirth P N. Rapidly assessing the 1997 drought in Papua New Guinea using composite AVHRR imagery. Int J Remote Sens, 2000, 22: 2109-2128. doi:  10.1080/01431160120728
    [16]
    Jupp D L. Directional radiance and emissivity measurement models for remote sensing of the surface energy balance. Environmental Modelling & Software, 1998, 3: 341-351. http://www.sciencedirect.com/science/article/pii/S1364815298000395
    [17]
    Bayarjargal Y, Karnieli A, Bayasgalan M, et al. A comparative study of NOAA-AVHRR derived drought indices using change vector analysis. Remote Sens Environ, 2006, 105(1):9-22. doi:  10.1016/j.rse.2006.06.003
    [18]
    金一谔, 刘长盛, 张文忠.利用气象卫星GMS和AVHRR资料推算地面水份含量的方法.应用气象学报, 1998, 9(2):197-204. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=19980227&flag=1
    [19]
    Price J C. Using spatial context in satellite data to infer regional scale vapotranspiration. IEEE Transactions on Geoscience and Remote Sensing, 1990, 28: 940-948. doi:  10.1109/36.58983
    [20]
    Carlson T N, Gillies R R, Perry E M. A method to make use of thermal infrared temperature and NDVI measurements to infer surface soil water content and fractional vegetation cover. Remote Sensing Reviews, 1994, 9: 161-173. doi:  10.1080/02757259409532220
    [21]
    Moran M S, Clarke T R, Inoue Y, et al. Crop water deficit using the relation between surface-air temperature and spectral vegetation index. Remote Sens Environ, 1994, 49:246-263. doi:  10.1016/0034-4257(94)90020-5
    [22]
    Kogan F N. Remote sensing of weather impacts on vegetation in nonhomogeneous areas. Int J Remote Sens, 1990, 11: 405-1419. doi:  10.1080/01431169008955102
    [23]
    Kogan F N, Sullivan J. Development of global drought-watch system using NOAA/AVHRR data. Advances in Space Research, 1993, 13: 219-222. doi:  10.1016/0273-1177(93)90548-P
    [24]
    Kogan F N. Application of vegetation index and brightness temperature for drought detection. Advances in Space Research, 1995, 15: 91-100. http://www.sciencedirect.com/science/article/pii/027311779500079T
    [25]
    Kogan F N. Global drought watch from space. Bull Amer Meteor Soc, 1997, 78:727-636. doi:  10.1175/1520-0477%281997%29078<0621%3AGDWFS>2.0.CO%3B2
    [26]
    于敏, 程明虎.基于NDVI-Ts特征空间的黑龙江省干旱监测.应用气象学报, 2010, 21(2): 221-228. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20100212&flag=1
    [27]
    孙丞虎, 李维京, 张祖强, 等.淮河流域土壤湿度异常的时空分布特征及其与气候异常关系的初步研究.应用气象学报, 2005, 16(2):130-138. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20050217&flag=1
    [28]
    李巧萍, 丁一汇, 董文杰.壤湿度异常对区域短期气候影响的数值模拟试验.应用气象学报, 2007, 18(1):1-10. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20070102&flag=1
    [29]
    侯英雨, 何延波, 柳钦火, 等.干旱监测指数研究.生态学杂志, 2007, 26(6): 892-897. http://cdmd.cnki.com.cn/Article/CDMD-10635-1015337610.htm
    [30]
    Monteith J L. Principles of Environmental Physics. Arnold, London, 1973.
    [31]
    Gillies R R, Carlson T N, Cui J, et al. A verification of the 'triangle' method for obtaining surface soil water content and energy fluxes from remote measurement of the Normalized Difference Vegetation Index (NDVI) and surface radiant temperature. Inter J Remote Sens, 1997, 18: 3145-3166. doi:  10.1080/014311697217026
    [32]
    Sandholt I, Rasmussen K, Andersen J. A simple interpretation of the surface temperature/vegetation index space for assessment of surface moisture status. Remote Sens Environ, 2002, 79:213-224. doi:  10.1016/S0034-4257(01)00274-7
    [33]
    Goetz S J. Muti-sensor analysis of NDVI, surface temperature and biophysical variables at a mixed grassland site. Inter J Remote Sens, 1997, 18(1): 71-94. doi:  10.1080/014311697219286
    [34]
    Nemani R R, Running S W. Estimation of regional surface resistance to evapotranspiration from NDVI and thermal-IR AVHRR data. J Applied Meteor, 1989, 28:276-283. doi:  10.1175/1520-0450(1989)028<0276:EORSRT>2.0.CO;2
    [35]
    王鹏新, 龚健雅, 李小文, 等.基于植被指数和土地表面温度的干旱监测模型.地球科学进展, 2003, 18(4):527-533. http://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ200304008.htm
    [36]
    于敏, 高玉中, 张洪玲.地表温度-植被指数特征空间干旱监测方法的改进.农业工程学报, 2010, 26(9):243-250. http://www.cnki.com.cn/Article/CJFDTOTAL-QXXB201105015.htm
  • 加载中
  • -->

Catalog

    Figures(5)  / Tables(4)

    Article views (4271) PDF downloads(1217) Cited by()
    • Received : 2010-08-31
    • Accepted : 2010-12-24
    • Published : 2011-04-30

    /

    DownLoad:  Full-Size Img  PowerPoint