Chen Jinhua, Yang Zaiqiang, Yang Taiming, et al. Real time observing and forecasting system for soil moisture in Anhui Province. J Appl Meteor Sci, 2011, 22(2): 249-256.
Citation: Chen Jinhua, Yang Zaiqiang, Yang Taiming, et al. Real time observing and forecasting system for soil moisture in Anhui Province. J Appl Meteor Sci, 2011, 22(2): 249-256.

Real Time Observing and Forecasting System for Soil Moisture in Anhui Province

  • Received Date: 2010-08-03
  • Rev Recd Date: 2010-12-02
  • Publish Date: 2011-04-30
  • In order to meet the needs of flood control and drought relief, the operation of soil moisture observation is launched routinely in meteorological department, by artificial boring stick all the time or by automatic measurer in recent years. However, the use of soil moisture data is always lagging with poor matching service and continuity. Based on the soil water observation network (including the manual and automatic network) and many kinds of approaches for data transmission, Real Time Observing and Forecasting System for Soil Moisture in Anhui Province (SMRTOFS) is developed. SMRTOFS is composed of data observation and transmission subsystem, forecast subsystem, and display subsystem. In data observation and transmission subsystem, the data from manual observers and automatic observation stations is collected in real time and stored in standard soil moisture database, and the data from unexpected transmission approach is also automatically gathered and conserved by defining an intermediate file. In forecast subsystem, predicting models of soil water content for each season are established, and soil moisture forecast is achieved using the latest soil water observation data and the coming 10-day weather information. In the display subsystem, based on the secondary development of Golden Software Surfer 8.0 and line bar chart control, the results of soil water observation and prediction in different seasons and different depths are exported and displayed dynamically, with the patterns of data table, the filled contour in spatial scale, bar chart, and so on. In the system, four-level files from observation to application are constructed including observation raw data, standard database, primary products and user products. The operation flow of soil moisture observation and forecast is reduced to transforming the four-level files. With higher applicability and compatibility, the system is applied triumphantly to the service of agricultural drought and waterlogging operation in Anhui Province. The information could be used to avoid the loss of flood and drought disaster. However, the soil moisture forecasting is based on statistical method, so the model parameters need modification for other regions. Implementing better Soil-Plant-Atmosphere Continuum model can also improve the performance of this system.
  • Fig. 1  The structure and data flow of SMRTOFS

    Fig. 2  The process of interpreting and forecasting of soil water data

    Fig. 3  The principle of data interpolation and contour map filling

    Fig. 4  The example of soil water observing

    (a) linear graph display, (b) dynamically showing of the latest soil water data on spatial scale

    Fig. 5  The example of soil water forecasting (a) forecasting in 0—20 cm depth, (b) forecasting in 20—50 cm depth, (c) comparison between predicting value and observing value in 0—20 cm depth, (d) comparison between predicting value and observing value in 20—50 cm depth

    Table  1  Drought index of soil relative humidity

    等级 类型 土壤相对湿度/%
    1 过湿 θ′>90
    2 正常 60<θ′≤90
    3 轻旱 50<θ′≤60
    4 中旱 40<θ′≤50
    5 重旱 θ′≤40
    DownLoad: Download CSV

    Table  2  The parameters of soil water forecasting model

    季节 a0 a1 a2 a3 a4
    PP0 春季 10.70 0.768 -0.034 0.538 -0.024
    夏季 32.80 0.657 -0.067 0.540 -0.070
    秋季 10.82 0.833 -0.035 0.386 -0.027
    冬季 0.72 0.930 -0.016 0.295 -0.015
    PP0 春季 33.28 0.420 -0.020 7.320 -0.137
    夏季 44.13 0.280 -0.049 7.580 -0.030
    秋季 39.31 0.405 -0.051 7.750 -0.112
    冬季 35.08 0.441 -0.021 5.870 -0.010
    DownLoad: Download CSV

    Table  3  Table structure of soil water

    列名 中文名称 类型 单位
    Rq 日期 character
    Zhh 站号 character
    Zhm 站名 character
    Sjlx* 数据类别 integer
    Tzlx 台站类型 integer
    Sgg 灌溉标示 integer
    S10 0~10 cm single %
    S20 10~20 cm single %
    S30 20~30 cm single %
    S40 30~40 cm single %
    S50 40~50 cm single %
    S60 50~60 cm single %
    S70 60~70 cm single %
    S80 70~80 cm single %
    S90 80~90 cm single %
    S100 90~100 cm single %
    Sgtc 干土层厚度 integer cm
    注:*数据类别有3种:0表示相对湿度,1表示体积含水率,2表示重量含水率。
    DownLoad: Download CSV

    Table  4  Property of the class of SurferIni

    属性 数据类型 备注
    Back_layer string 背景图层路径
    Grid_txt string 图形数据文件路径
    LongLat (1 to 4) single 图像经纬度区间
    Level_file string 自定义的色标文件路径
    Bln_file string 白化时省边界文件路径
    Bmp_width integer 输出图像宽
    Bmp_Height integer 输出图像高
    Bmp_output string 图像输出路径
    BmpWHbili boolean 是否按高/宽比输出
    Srf_output string *.srf输出路径
    DownLoad: Download CSV
  • [1]
    王善型, 宣春生, 王效瑞, 等.安徽省志·气象志.合肥:安徽人民出版社, 1990.
    [2]
    陈家宙, 陈明亮, 何圆球.各具特色的当代土壤水分测量技术.湖北农业科学, 2001(3):25-28. http://www.cnki.com.cn/Article/CJFDTOTAL-HBNY200103012.htm
    [3]
    冶林茂, 吴志刚, 牛素军, 等. GStar-Ⅰ型电容式土壤水分监测仪设计与应用.气象与环境科学, 2008, 31(3):82-85. http://www.cnki.com.cn/Article/CJFDTOTAL-HNQX200803018.htm
    [4]
    Menziani M, Pugnaghi S, Pilan L, et al. TDR soil moisture measurements at the Lago Maggiore MAP target area: Preliminary results.Physics and Chemistry of the Earth, Part B: Hydrology, Oceans and Atmosphere, 2001, 26: 431-436. doi:  10.1016/S1464-1909(01)00031-4
    [5]
    范佳林, 梁秀清.土壤墒情自动化监测及应用.现代农业科技, 2010(7):323; 327. http://www.cnki.com.cn/Article/CJFDTOTAL-ANHE201007217.htm
    [6]
    国家防汛抗旱总指挥部办公室. 全国旱情监测规划. 2007: 32-35. http://www.docin.com/p-8690746.html.
    [7]
    邵晓梅, 严昌荣, 徐振剑.土壤水分监测与模拟研究进展.地理科学进展, 2004, 23(3): 59-66. http://www.cnki.com.cn/Article/CJFDTOTAL-DLKJ200403007.htm
    [8]
    黄妙芬, 康玲玲, 王云璋.气象、水文干旱指数计算访求研究概述.水资源与水工程学报, 2004, 15 (3):15-18. http://www.cnki.com.cn/Article/CJFDTOTAL-XBSZ200403004.htm
    [9]
    陈金华, 杨太明, 马晓群, 等.安徽省长江以北地区土壤水分动态模拟初探.中国农业气象, 2007, 28(3): 289-291. http://www.cnki.com.cn/Article/CJFDTOTAL-ZGNY200703012.htm
    [10]
    元来福, 王继琴.从农业需水量评价我国的干旱状况.应用气象学报, 1995, 6(3):86-92. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=19950355&flag=1
    [11]
    王晓云, 郭文利, 奚文, 等.利用"3S"技术进行北京地区土壤水分监测应用技术研究.应用气象学报, 2002, 13(4):422-431. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20020457&flag=1
    [12]
    李玉中, 程延年, 安顺清.北方地区干旱规律及抗旱综合技术.北京:中国农业科学技术出版社, 2002.
    [13]
    董振国.作物层温度与土壤水分关系.科学通报, 1986, 31(8):186-190. http://www.cnki.com.cn/Article/CJFDTOTAL-KXTB198608012.htm
    [14]
    Caporali E, Entekhabi D, Castelli F. Rainstorm statistics conditional on soil moisture index: Temporal and spatial characteristics. Meccanica, 1996, 31:103-116. doi:  10.1007/BF00444158
    [15]
    Wang J R. An overview of the measurements of soil moisture and modeling of moisture flux in FIFE. J Geophys Res, 1992, 97(D17): 955-959. https://www.researchgate.net/publication/4708806_An_overview_of_the_measurements_of_soil_moisture_and_modeling_of_moisture_flux_in_FIFE
    [16]
    郭以明, 郭相平, 樊峻江, 等.蓄水控灌模式对水稻产量和水分生产效率的影响.灌溉排水学报, 2010, 29(3): 61-63;73. http://www.cnki.com.cn/Article/CJFDTOTAL-GGPS201003015.htm
    [17]
    王传河.小麦不同指标对旱涝反应敏感性差异的比较.中国农业通报, 2003, 19(6):33-40. http://www.cnki.com.cn/Article/CJFDTOTAL-ZNTB200306012.htm
    [18]
    张爱民, 马晓群.安徽省旱涝灾害及其对农作物产量影响.应用气象学报, 2007, 18(5):619-625. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20070595&flag=1
    [19]
    邵光成, 张展羽, 蔡焕杰, 等.膜下滴灌棉花缺水诊断指标的试验研究.河海大学学报 (自然科学版), 2004, 32(5):546-553. http://www.cnki.com.cn/Article/CJFDTOTAL-HHDX200405017.htm
    [20]
    谭宗锟.广西农业气象灾害风险评价及灾害风险区划.广西气象, 1997, 18(1):44-50. http://www.cnki.com.cn/Article/CJFDTOTAL-GXQX701.012.htm
    [21]
    李世奎, 霍治国, 王素艳, 等.农业气象灾害风险评估体系及模型研究.自然灾害学报, 2004, 13(1): 77-86. http://www.cnki.com.cn/Article/CJFDTOTAL-ZRZH200401013.htm
    [22]
    宋丽莉, 王春霖, 董永春.水稻干旱动态模拟及干旱损失评估.应用气象学报, 2001, 12(2):23-26. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20010230&flag=1
    [23]
    Naor A. Relationship between leaf and stem water potential and stomatal conductance in three field-grown woody species. J Hort Sci & Biotechnology, 1998, 73:431-436. https://www.researchgate.net/publication/290014488_Relations_between_leaf_and_stem_water_potentials_and_stomatal_conductance_in_three_field-grown_woody_species
    [24]
    Nicola M, John D A. Multi-scale assimilation of surface soil moisture data for robust root zone moisture predictions. Advances in Water Resources, 2003, 26(1): 33-44. doi:  10.1016/S0309-1708(02)00103-3
    [25]
    Nicola B, Maelle A. Operational mapping of soil moisture using synthetic aperture radar data: Application to the Touch Basin (France). Sensors, 2007, 7: 2458-2483. doi:  10.3390/s7102458
    [26]
    王越, 江志红, 张强, 等.用Palmer湿润指数作西北地区东部冬小麦旱涝评估.应用气象学报, 2008, 19(3):342-349. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20080356&flag=1
    [27]
    刘云辉, 朱渐臣.丹东地区中部春播期土壤水分特征及早涝评价.中国农业气象, 2008, 29(2):174-176. http://www.cnki.com.cn/Article/CJFDTOTAL-ZGNY200802016.htm
    [28]
    鞠笑生, 杨贤为, 陈丽娟, 等.我国单站早涝指标确定和区域早涝级别划分的研究.应用气象学报, 1997, 8(1):26-33. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=yyqx701.003&dbname=CJFD&dbcode=CJFQ
    [29]
    侯琼, 郝文俊.内蒙古地区玉米农田土壤墒情动态预测模式.干旱地区农业研究, 2000, 12(4): 49-56. http://www.cnki.com.cn/Article/CJFDTOTAL-GHDQ200004010.htm
    [30]
    申惠娟, 严昌荣, 戴亚平.等.农田土壤水分预测模型的研究进展及应用.生态科学, 2003, 22(4):366-370. http://www.cnki.com.cn/Article/CJFDTOTAL-STKX200304019.htm
    [31]
    盛绍学, 胡雯, 马晓群, 等.安徽省农业干旱遥感监测指标的确定及应用.安徽气象, 2000(3):16-18. http://www.cnki.com.cn/Article/CJFDTOTAL-ZGNY200104008.htm
  • 加载中
  • -->

Catalog

    Figures(5)  / Tables(4)

    Article views (4634) PDF downloads(2070) Cited by()
    • Received : 2010-08-03
    • Accepted : 2010-12-02
    • Published : 2011-04-30

    /

    DownLoad:  Full-Size Img  PowerPoint