Xiao Weihua, Fu Yang, Gao Taichang, et al. Deriving atmospheric zonal mean winds from refractive index data. J Appl Meteor Sci, 2011, 22(3): 346-355.
Citation: Xiao Weihua, Fu Yang, Gao Taichang, et al. Deriving atmospheric zonal mean winds from refractive index data. J Appl Meteor Sci, 2011, 22(3): 346-355.

Deriving Atmospheric Zonal Mean Winds from Refractive Index Data

  • Received Date: 2010-09-17
  • Rev Recd Date: 2011-02-22
  • Publish Date: 2011-06-30
  • There are few effective ways to explore the middle atmospheric wind field directly at the altitude range of 20—60 km, and the direct sounding methods have some limitations, but the wind field could be derived from atmospheric refractive index and pressure data. From the bending angles, a large number of profiles of atmospheric refractivity, pressure and temperature are obtained with the newly launched Constellation Observing System for Meteorology Ionosphere and Climate (COSMIC)/Formosa Satellite 3(FORMOSAT-3) System. Taking full advantage of these data has a positive impact on the research of the global middle atmospheric wind field. The approach for calculating middle atmosphere zonal mean winds at the altitude range of 20—60 km is constructed according to gradient wind equations from atmospheric refractive index data, considering the characteristics and calculation methods of geostrophic wind, gradient wind and balance wind respectively, and the relationships among atmospheric refractive index, density and wind field. Following the method constructed above, the middle atmosphere zonal mean winds are calculated by the gridded refractive index data in January, April, July and October of 2007 and the latitude-height distributions of zonal mean winds are discussed. The gridded data is derived through the inverse distance weighted interpolation method. The data is compared with monthly average wind data of European Centre for Medium Range Weather Forecasts Reanalysis-interim (ERA-interim) and the Modern Era Retrospective-analysis for Research and Applications (MERRA) data sets for validation. The comparisons reveal excellent agreement, and the characteristics of calculated winds are similar with that of the reanalyzed winds. In January and July, easterly winds prevail in summer hemisphere zonal mean zona1 winds and it increase as the height increases, while in winter westerly winds prevail hemisphere zone-mean zona1 winds. The zonal wind first increases and then decreases from the high-latitude to the low-latitude regions of winter hemisphere, with the maximum in the middle-latitude regions of winter hemisphere. The root mean square deviation and the largest deviation at different heights are larger and larger along the heights, while the correlation coefficients along latitude get smaller, but it is still greater than 0.98. The root mean square deviation is about 6 m·s-1, and the largest deviation is less than 11 m·s-1in January and July. Spring and autumn are the transition periods, when westerly winds prevail in global, but decrease versus increasing heights in the high-latitude regions of northern hemisphere and even reverse near the top in April; westerly winds prevail in the high-latitude regions, while for some altitudes in the low-latitude regions easterly winds are dominant. The differences are not very large in April and October, with the largest deviation no more than 8 m·s-1, indicating that deriving wind fields from the COSMIC refractive index data through gradient wind equations is an effective way.
  • Fig. 1  The global distribution of radio occultation events from 00:00:00 to 11:59:59 during 1—10 April 2007

    Fig. 2  Latitude-altitude cross section of zone-mean meridional winds from COSMIC, ECMWF, MERRA in April and October (unit: m·s-1)

    Fig. 3  Height profiles of the COSMIC and model zone-mean zonal winds derived for various latitudes and the bias in April and October of 2007

    Fig. 4  Zone-mean zonal winds in January and July of 2007 by COSIC, ECMWF, MERRA datasets and the differences between COSMIC and reanalysis (unit:m·s-1)

    Table  1  The zone-mean zonal winds bias between the COSMIC and reanalysis derived for various heights from 1 to 30 hPa in January and July of 2007

    高度层 最大偏差/(m·s-1) 标准偏差/(m·s-1) 相关系数
    COSMIC与
    ECMWF
    COSMIC与
    MERRA
    COSMIC与
    ECMWF
    COSMIC与
    MERRA
    COSMIC与
    ECMWF
    COSMIC与
    MERRA
    1月 7月 1月 7月 1月 7月 1月 7月 1月 7月 1月 7月
    30 hPa (约23 km) 2.51 2.27 2.86 2.25 1.11 1.01 1.31 1.20 0.997 0.999 0.997 0.999
    20 hPa (约26 km) 3.94 3.04 4.21 3.05 1.50 1.41 1.70 1.69 0.997 0.999 0.997 0.999
    10 hPa (约30 km) 6.63 4.49 7.04 4.70 2.02 2.20 2.27 2.48 0.996 0.998 0.996 0.998
    7 hPa (约33 km) 7.09 5.45 7.89 5.44 2.17 2.70 2.42 2.95 0.996 0.998 0.996 0.998
    5 hPa (约35 km) 7.41 6.29 8.55 6.72 2.34 3.21 2.55 3.69 0.996 0.997 0.996 0.997
    3 hPa (约39 km) 8.26 7.65 9.04 8.93 2.83 3.96 2.79 4.90 0.995 0.997 0.995 0.996
    2 hPa (约42 km) 7.81 9.30 8.52 9.55 3.23 4.72 3.07 5.14 0.994 0.996 0.994 0.996
    1 hPa (约47 km) 7.32 10.82 7.77 10.60 5.08 6.19 4.47 6.00 0.987 0.996 0.990 0.996
    DownLoad: Download CSV
  • [1]
    Andrews D G, Holton J R, Leovy C B.Middle Atmosphere Dynamics. London:Academic Press Inc, 1987.
    [2]
    Hedin A E, Fleming E L, Manson A H, et al. Empirical wind model for the upper middleand lower atmosphere. J Atmos Solar-Terr Phys, 1996, 58:1421-1447. doi:  10.1016/0021-9169(95)00122-0
    [3]
    Fleming E L, Chandra S, Barnett J J, et al. Zonal mean temperature, pressure, zonal wind and geopotential height as functions of latitude. Adv Space Res, 1990, 10(12):11-59. doi:  10.1016/0273-1177(90)90386-E
    [4]
    Oberheide J, Hagan M E, Ward W E, et al.Modeling the diurnal tide for the Cryogenic Infrared Spectrometers and Telescopes for the Atmospheric (CRISTA)1 time periode.J Geophys Res, 2000, 105:24917-24929. doi:  10.1029/2000JA000047
    [5]
    马瑞平, 廖怀哲.中国地区20—80 km高空风的一些特征.空间科学学报, 1999, 19(4):334-341. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=kjkb199904007&dbname=CJFD&dbcode=CJFQ
    [6]
    刘三军, 熊建刚, 万卫星, 等.利用Aura卫星资料计算全球中层大气背景风场.空间科学学报, 2007, 27(5):400-408. doi:  10.11728/cjss2007.05.400
    [7]
    Kursinski E R, Hajj G A, Bertiger W L, et a1.Initial results of radio occultation observations of Earth's atmosphere using the Global Positioning System. Science, 1996, 271:1107-1110. doi:  10.1126/science.271.5252.1107
    [8]
    杜明斌, 杨引明, 丁金才.COSMIC反演精度和有关特性检验.应用气象学报, 2009, 20(5):586-593. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20090510&flag=1
    [9]
    Anthes R A, Bernhardt P A, Chen Y, et al. The COSMIC/FORMOSAT-3 mission: Early results. Bull Amer Meteor Soc, 2008, 89:313-333. doi:  10.1175/BAMS-89-3-313
    [10]
    徐影, 丁一汇, 赵宗慈.美国NCEP/NCAR近50年全球再分析资料在我国气候变化研究中可信度的初步分析.应用气象学报, 2001, 12(3):337-347. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20010345&flag=1
    [11]
    [12]
    范晓青, 李维京, 张培群.模式大气月尺度可预报性对比研究.应用气象学报, 2003, 14(1):49-60. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20030106&flag=1
    [13]
    Trenberth K E, Stepanish D P.Apthological problem with NCEP reanalysis in the stratosphere. J Climate, 2002, 16 (6):690-695. http://www.nws.noaa.gov/ost/climate/STIP/Trenberth_jc_02.pdf
    [14]
    Michele Rienecker, Max Suarez, Ricardo Todling, et al. MERRA & US Reanalysis Plans & Activities. http://www.geofaculty.org:16080/reanalysis/rienecker_MERRA_(presentation).pdf.
    [15]
    Jarrett Cohen. MERRA Project to Reconstruct Last 30 Years of Earth's Climate and Weather. http://science.gsfc.nasa.gov/606/docs/newsletter/cisto_news.summer07.pdf.
    [16]
    庄立伟, 王石立.东北地区逐日气象要素的空间插值方法应用研究.应用气象学报, 2003, 14(5):605-615. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20030575&flag=1
    [17]
    高歌, 龚乐冰, 赵珊珊, 等.日降水量空间插值方法研究.应用气象学报, 2007, 18(5):731-736. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=200705111&flag=1
    [18]
    刘式达, 刘式适.大气动力学.北京:北京大学出版社, 1999:17-20.
    [19]
    肖存英, 胡雄, 田剑华.利用卫星温度资料计算风场的方法分析与比较.地球物理学报, 2008, 51(2):325-336. http://www.cnki.com.cn/Article/CJFDTOTAL-DQWX200802006.htm
    [20]
    徐晓华, 罗佳.COSMIC掩星折射指数廓线的统计验证.武汉大学学报 (信息科学版), 2009, 34(2):214-217. http://www.cnki.com.cn/Article/CJFDTOTAL-WHCH200902024.htm
    [21]
    蔡兆男, 王永, Liu Xiong, 等.利用探空资料验证GOME卫星臭氧数据.应用气象学报, 2009, 20(3):337-345. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20090310&flag=1
  • 加载中
  • -->

Catalog

    Figures(4)  / Tables(1)

    Article views (3467) PDF downloads(2201) Cited by()
    • Received : 2010-09-17
    • Accepted : 2011-02-22
    • Published : 2011-06-30

    /

    DownLoad:  Full-Size Img  PowerPoint