Li Wei, Zhao Peitao, Guo Qiyun, et al. The international radiosonde intercomparison result for China-made GPS radiosonde. J Appl Meteor Sci, 2011, 22(4): 453-462.
Citation: Li Wei, Zhao Peitao, Guo Qiyun, et al. The international radiosonde intercomparison result for China-made GPS radiosonde. J Appl Meteor Sci, 2011, 22(4): 453-462.

The International Radiosonde Intercomparison Result for China-made GPS Radiosonde

  • Received Date: 2010-10-22
  • Rev Recd Date: 2011-04-27
  • Publish Date: 2011-08-31
  • Based on total 29 groups observation data of the 8th WMO International Radionsonde System Intercomparison, using the same balloon releasing method and mainly choosing Vaisala radiosonde measurements as relative reference standard, the systematic evaluation for Changfeng China-made GPS radiosonde system and Huayun China-made GPS radiosonde system is carried out including typical examples analysis and statistics analysis. The initial evaluation results show that for temperature observation, the value of both domestic radiosonde is higher compared to Vaisala radiosonde. The relative systematic error of Changfeng radiosonde is within 0.4℃ and standard deviation is within 0.7℃, the Huayun radiosonde owns similar performance, but its error obviously increases. For humidity observation, the observation data of Changfeng radiosonde below 16 km basically show dry trend compared to Vaisala radiosonde, and below 12 km humid trend for Huayun radiosonde. Below 14 km the relative systematic errors for Changfeng radiosonde and Huayun radiosonde can be within 4% and 6%, respectively, and above 14 km the relative systematic errors obviously increase, reaching 12% and 20%, respectively, and the standard deviations for gradually show increasing trend from surface to tropopause and can reach 14% and 17%, respectively. For pressure observation the relative systematic errors and standard deviations for Changfeng radiosonde and Huayun radiosonde is smaller compared to Vaisala radiosonde, the relative systematic errors show the similar trend that negative values occur in low layer and positive values in upper layer, and the standard deviations show decreasing trend from surface to upper layer. The absolute value of minimal relative systematic error minus maximal relative systematic error is within 1 hPa and maximal standard deviation is 1.2 hPa for surface point, assuring the accurate geopotential height calculation and correct pressure retrieving algorithm. For wind observation the relative systematic errors and standard deviations for Changfeng radiosonde and Huayun radiosonde is smaller compared to Vaisala radiosonde, and the analysis results show excellent GPS positioning function and correct wind calculation algorithm. It can be concluded the domestic radiosonde has reached advanced level except for the humidity element. In future, more improvements should be made on temperature observation above 30 km and humidity observation under low temperature.
  • Fig. 1  Systematic errors (a) and standard deviations (b) of temperature statistics

    Fig. 2  Fine temperature and humidity structures of the 11th flight at low level at 08:35 16 July 2010

    Fig. 3  Systematic errors (a) and standard deviations (b) of humidity statistics

    Fig. 4  Temperature and humidity profiles of the 1st flight at 08:00 14 July 2010

    Fig. 5  Systematic errors (a) and standard deviations (b) of pressure retrieved from GPS height statistics

    Fig. 6  Systematic errors (a) and standard deviations (b) of north-south wind component statistics

    Fig. 7  ystematic errors (a) and standard deviations (b) of west-east wind component statistics

    Table  1  The temperature sample amount at different heights

    分析高度/kmVaisala长峰华云
    2619661956196
    4603560356035
    6567356735673
    8541354135413
    10527452745274
    12505850585058
    14495949594959
    16466046604660
    18527852785278
    20631763176317
    22530353035303
    24468466834683
    26405040504048
    28364333873435
    30357032903179
    32330232152970
    34313231322508
    36189118911117
    3828028040
    DownLoad: Download CSV

    Table  2  The humidity sample amount at different heights

    分析高度/kmVaisala长峰华云
    2585058495850
    4570057005700
    6535253525352
    8511451145114
    10407240724072
    12477547754775
    14486248624862
    16436643664366
    18499049904990
    20597659765976
    22495649564956
    24438043794379
    26377037703768
    28337431183374
    30320230023202
    32200029342000
    34324032403240
    36187718771877
    38240240240
    DownLoad: Download CSV

    Table  3  The pressure sample amount at different heights

    分析高度/kmVaisala长峰华云
    2619661956196
    4603560356035
    6587358735873
    8541354135413
    10527452745274
    12505850585058
    14405940594059
    16466046604660
    18527852785278
    20631763176317
    22530353035303
    24468446834683
    26405040504048
    28364333883643
    30357032903570
    32330232463302
    34351435143514
    36220322032203
    38280280280
    DownLoad: Download CSV

    Table  4  The wind sample amount at different heights

    分析高度/kmVaisala长峰华云
    2619661956196
    4603560356035
    6587358735873
    8541354135413
    10527452745274
    12505850585058
    14405940594059
    16466046604660
    18527852785278
    20631763176317
    22530353035303
    24468446834683
    26405040504048
    28364333883643
    30357035703570
    32330233023302
    34351435143514
    36220322032203
    38280280280
    DownLoad: Download CSV
  • [1]
    宋连春, 李伟.综合气象观测系统的发展.气象, 2008, 34(3):3-9. doi:  10.7519/j.issn.1000-0526.2008.03.001
    [2]
    WMO. Guide to Meteorological Instruments and Methods of Observation (Ⅴ7.0).Geneva:WMO, 2006.
    [3]
    Hooper A H. WMO International Radiosonde Comparison, Phase Ⅰ, Beaufort Park, U.K., 1984. WMO/TD-No.174, Instruments and Observing Methods Report No.28. Geneva:WMO, 1986.
    [4]
    Schmidlin F J. WMO International Radiosonde Comparison, Phase Ⅱ, Wallops Island, USA, 1985. WMO/TD-No.312, Instruments and Observing Methods Report No.29. Geneva:WMO, 1988.
    [5]
    Nash J, Schmidlin F J. WMO International Radiosonde Comparison, (U.K., 1984, U.S.A., 1985) Final Report. WMO/TD-No.195, Instruments and Observing Methods Report No.30. Geneva:WMO, 1987.
    [6]
    Ivanov A, Kats A, Kumosenko S, et al. WMO International Radiosonde Intercomparison Phase Ⅲ (Dzhambul, USSR, 1989) Final Report. WMO/TD-No.451, Instruments and Observing Methods Report No.40. Geneva:WMO, 1991.
    [7]
    Yagi S, Mita A, Inoue N. WMO International Radiosonde Intercomparison Phase Ⅳ (Tsukuba, Japan, 1993) Final Report. WMO/TD-No.742, Instruments and Observing Methods Report No.59. Geneva:WMO, 1996.
    [8]
    Balagurov A, Kats A, Krestyannikova N, et al. WMO Radiosonde Humidity Sensor Intercomparison, 1995. WMO/TD-No. 1305, Instruments and Observing Methods Report No.88. Geneva:WMO, 2006.
    [9]
    Da Silveira, Fisch R G, Machado L, et al. WMO Intercomparison of GPS Radiosondes, Alcantara, Brazil, 2001. WMO/TD-No.1314, Instruments and Observing Methods Report No.90. Geneva:WMO, 2006.
    [10]
    Nash J, Smout R, Oakley T, et al. WMO Intercomparison of High Quality Radiosonde Systems Final Report (Vacaos, Mauritius, 2005), Geneva:WMO, 2006.
    [11]
    GCOS. 2002: Manual on the GCOS Surface and Upper-Air Networks: GSN and GUAN, GCOS73. WMO/TD-No.1106, Geneva:WMO, 2002.
    [12]
    GCOS. 2007: GCOS Reference Upper-Air Network (GRUAN): Justification, Requirements, Siting and Instrumentation Options, GCOS112. WMO/TD-No.1379, Geneva:WMO, 2007.
    [13]
    Haimberger L. Homogenization of radiosonde temperature time series using innovation statistics. J Climate, 2007, 20(7):1377-1403. doi:  10.1175/JCLI4050.1
    [14]
    Sapucci Luiz F, Luiz A T Machado, Reinaldo B, et al. Analysis of relative humidity sensors at the WMO radiosonde intercomparison experiment in Brazil. J Atmos Ocean Technol, 2005, 22(6):664-678. doi:  10.1175/JTECH1754.1
    [15]
    姚雯, 郑国光, 郭亚田, 等.气象探空测风软件系统的标准化研究.应用气象学报, 2004, 15(1):88-94. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20040112&flag=1
    [16]
    黄炳勋.C波段测风一次雷达的跟踪特性及其应用前景.应用气象学报, 1995, 6(2):153-162. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=19950220&flag=1
    [17]
    姚雯, 马颖, 黄炳勋, 等.利用GPS定位资料分析L波段雷达测风性能.应用气象学报, 2009, 20(2):195-202. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20090209&flag=1
    [18]
    毛节泰. GPS的气象应用.气象科技, 1993, 21(4):45-49. http://www.cnki.com.cn/Article/CJFDTOTAL-QUDW201104022.htm
    [19]
    朱喜林.GPS及其在大气探测中的应用.气象水文海洋仪器, 2004(1):42-46. http://www.cnki.com.cn/Article/CJFDTOTAL-QXSW200401009.htm
    [20]
    李国平, 黄丁发. GPS气象学研究及应用的进展与前景.气象科学, 2005, 25(6):651-661. http://www.cnki.com.cn/Article/CJFDTOTAL-QXKX200506012.htm
    [21]
    秦晓军. GPS技术在气象探空测风中的应用.陕西气象, 2006(3):29-30. http://www.cnki.com.cn/Article/CJFDTOTAL-SXQI200603010.htm
    [22]
    徐刚, 王培延. GPS气象探空仪原理与工程设计.导航, 2005, 41(2):115-118. http://cdmd.cnki.com.cn/Article/CDMD-10730-1015519400.htm
    [23]
    马舒庆, 李峰, 邢毅.从毛里求斯国际探空系统对比看全球探空技术的发展.气象科技, 2006, 34(5):606-609. http://www.cnki.com.cn/Article/CJFDTOTAL-QXKJ200605022.htm
    [24]
    李伟, 邢毅, 马舒庆.国产GTS1探空仪与VAISALA公司RS92探空仪对比分析.气象, 2009, 35(10):97-102. doi:  10.7519/j.issn.1000-0526.2009.10.012
    [25]
    Jauhiainen H, Lehmuskero M. Vaisala White Paper, Performance of the Vaisala Radiosonde RS92-SGP and Vaisala DigiCORAR® Sounding System MW31 in the WMO Mauritius Radiosonde Intercomparison, 2005.
    [26]
    李伟, 房岩松, 王缅.芬兰VAISALA公司RS92探空仪测量结果不确定度分析.仪器仪表学报, 2009, 30(6):89-91. http://cpfd.cnki.com.cn/Article/CPFDTOTAL-YQYB200907001032.htm
  • 加载中
  • -->

Catalog

    Figures(7)  / Tables(4)

    Article views (4459) PDF downloads(1606) Cited by()
    • Received : 2010-10-22
    • Accepted : 2011-04-27
    • Published : 2011-08-31

    /

    DownLoad:  Full-Size Img  PowerPoint