Liu Yudi, Ren Jingpeng, Zhou Xin. The impact of assimilating sea surface wind aboard QuikSCAT on sea fog simulation. J Appl Meteor Sci, 2011, 22(4): 472-481.
Citation: Liu Yudi, Ren Jingpeng, Zhou Xin. The impact of assimilating sea surface wind aboard QuikSCAT on sea fog simulation. J Appl Meteor Sci, 2011, 22(4): 472-481.

The Impact of Assimilating Sea Surface Wind Aboard QuikSCAT on Sea Fog Simulation

  • Received Date: 2010-06-25
  • Rev Recd Date: 2011-05-16
  • Publish Date: 2011-08-31
  • Sea fog is a kind of disaster weather with strong local characteristics. It has brought more serious losses as people's activities over the sea become more frequent. Therefore, the forecast of sea fog is becoming more and more important. There is no effective method to directly and widely obtain the real data of meteorological fields over the sea at present. However, the microwave scatterometer aboard a satellite is the most popular sensor that provides accurate global sea surface winds which are used widely. At the same time, the progress and popularity of variational assimilation method also make a great deal of unconventional data be used in numerical models, which optimize initial condition of models.To evaluate the impact of assimilating the sea surface wind data aboard QuikSCAT on the sea fog simulation, 3 sensitive experiments are carried out for the sea fog process during 3—5 April 2006. The effect of the different boundary layer parameterization schemes, such as Medium Range Forecast Model (MRF), Yonsei University (YSU) and Mellor-Yamada-Janjic (MYJ) on sea fog simulation are discussed. It is found that YSU boundary layer physical parameterization scheme is more suitable for simulating sea fog, the MRF scheme takes the second place and the MYJ scheme is the worst. Then by the three dimensional variational data assimilation (3DVAR) method based on the Weather Research and Forecast (WRF) model the sea surface wind aboard QuikSCAT is assimilated to investigate an advection fog and a radiation fog occurred over the sea around China, respectively.The results with and without assimilating the QuikSCAT sea surface wind data are used as the initial fields for WRF model to simulate the sea fog, respectively. The simulated results are compared with the satellite nephogram and the ground observation. Preliminary results show that the three dimensions variational assimilation of sea surface wind data by WRF-3DVAR system can make the sea surface wind data affect other element fields at low levels of the model, which have an obviously positive impact on the area forecast of sea fog. In particular, some detailed results are obviously better compared with those of the control experiment without assimilating the sea surface wind data. But for high levels the impact is limited. Since the sea fog data are sparse, results of only two cases are insufficient to generalization, so more cases will be discussed to validate the conclusions in the future.
  • Fig. 1  The visibility simulated by MRF scheme and YSU scheme at 00:00 4 April 2006

    (the blue contour denotes the visibility, unit:km; the red contour denotes the terrain, unit:m)

    Fig. 2  The ground observation at 00:00 4 April 2006

    Fig. 3  The visibility simulated in the control experiment (a) and assimilation experiment (b) at 00:00 4 April 2006 (the blue contour denotes the visibility, unit: km; the red contour denotes the terrain, unit: m)

    Fig. 4  Wind field at 10 m height (vector) and temperature field at 2 m height (contour, unit:℃) of the control experiment (a) and assimilation experiment (b) at 00:00 4 April 2006

    Fig. 5  Relative humidity at 1000 hPa in the control experiment (a) and assimilation experiment (b) at 00:00 4 April 2006 (unit:%)

    Fig. 6  The potential height (red contour, unit:m) and temperature (blue contour, unit: K) fields at 850 hPa of the control experiment (a) and assimilation experiment (b) at 00:00 4 April 2006

    Fig. 7  The simulated visibility of the control experiment (a) and assimilation experiment (b) at 09:00 23 June 2005

    (the blue contour denotes the visibility, unit: km; the red contour denotes the terrain, unit:m)

    Fig. 8  The ground observation at 09:00 23 June 2005

    Fig. 9  Wind field at 10 m height (vector) and temperature field at 2 m height (contour, unit:℃) of the control experiment (a) and assimilation experiment (b) at 09:00 23 June 2005

    Fig. 10  Dew point deficit at 1000 hPa of the control experiment (a) and assimilation experiment (b) at 09:00 23 June 2005 (unit:℃)

  • [1]
    Leidner S M, Isaksen L, Hoffman R N. Impact of NSCAT winds on tropical cyclones in the ECMWF 4DVAR Assimilation System. Mon Wea Rev, 2003, 131:3-26. doi:  10.1175/1520-0493(2003)131<0003:IONWOT>2.0.CO;2
    [2]
    刘春霞, 王静, 齐义泉, 等.基于WRF模式同化QuikSCAT风场资料的初步试验.热带海洋学报, 2004, 23(6):69-74. http://www.cnki.com.cn/Article/CJFDTOTAL-RDHY200406006.htm
    [3]
    Zeng Zhihua, Duan Yihong, Liang Xudong, et al. The effect of three-dimensional variational data assimilation of QuikSCAT data on the numerical simulation of typhoon track and intensity. Adv Atm Sci, 2005, 22(4): 534-544. doi:  10.1007/BF02918486
    [4]
    樊琦, 王安宇, 范绍佳.珠江三角洲地区一次辐射雾的数值模拟研究.气象科学, 2004, 24(1):1-7. http://www.cnki.com.cn/Article/CJFDTOTAL-QXKX200401000.htm
    [5]
    樊琦, 吴兑, 范绍佳, 等.广州地区冬季一次大雾的三维数值模拟研究.中山大学学报, 2003, 42(1):83-86. http://www.cnki.com.cn/Article/CJFDTOTAL-ZSDZ200301021.htm
    [6]
    Pagowski M, Gultepe I, King P. Analysis and modeling of an extremely dense fog event in Southern Ontario. J Appl Meteor, 2004, 43:3-16. doi:  10.1175/1520-0450(2004)043<0003:AAMOAE>2.0.CO;2
    [7]
    傅刚, 张涛, 周发琇.一次黄海海雾的三维数值模拟研究.青岛海洋大学学报, 2002, 32(6):859-867. http://www.cnki.com.cn/Article/CJFDTOTAL-QDHY200206001.htm
    [8]
    傅刚, 王菁茜.一次黄海海雾事件的观测和数值模拟研究.中国海洋大学学报, 2004, 34(5):720-726. http://www.cnki.com.cn/Article/CJFDTOTAL-QDHY200405005.htm
    [9]
    Stoelinga M T, Warner T T. Nonhydrostatic, mesobeta-scale model simulations of cloud ceiling and visibility for an East Coast winter precipitation event. Appl Meteor, 1999, 38: 385-404. doi:  10.1175/1520-0450(1999)038<0385:NMSMSO>2.0.CO;2
    [10]
    刘宇迪, 亓晨.散射计海面风场的二维变分模糊去除方法.热带气象学报, 2010, 26(5):620-625. http://www.cnki.com.cn/Article/CJFDTOTAL-RDQX201005015.htm
    [11]
    Stoffelen A, Anderson D. The ECMWF Contribution to the Characterization, Interpretation, Calibration and Validation of ERS-1 Scatterometer Backscatter Measurements and Their Use in Numerical Weather Prediction Models', ESA Contract 9097/90/NL/BI Report, Eur Centre for Medium-range Weather Forecasts, Reading, England, 1995.
    [12]
    石红艳, 王洪芳, 齐琳琳, 等.长江中下游地区一次辐射雾的数值模拟.解放军理工大学学报 (自然科学版), 2005, 6(4):404-408. http://www.cnki.com.cn/Article/CJFDTOTAL-JFJL200504022.htm
    [13]
    董剑希. 雾的数值模拟研究及其综合观测. 南京: 南京信息工程大学, 2005.
    [14]
    何立富, 李峰, 李泽椿, 等.华北平原一次持续性大雾过程的动力和热力特征.应用气象学报, 2006, 17(2):160-168. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20060228&flag=1
    [15]
    刘小宁, 张洪政, 李庆祥, 等.我国大雾的气候特征及变化初步解释.应用气象学报, 2005, 16(2):220-230. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20050227&flag=1
    [16]
    周梅, 银燕, 王巍巍. 2006年12月24—27日大范围大雾过程数值模拟.应用气象学报, 2008, 19(5):602-610. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20080512&flag=1
    [17]
    刘宇迪, 桂祈军, 李昕东, 等.水平网格计算频散性的研究.应用气象学报, 2001, 12(2):140-149. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20010220&flag=1
    [18]
    刘宇迪, 朱红伟.垂直网格计算频散性的研究.应用气象学报, 2001, 12(3):348-357. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20010346&flag=1
  • 加载中
  • -->

Catalog

    Figures(10)

    Article views (3824) PDF downloads(1381) Cited by()
    • Received : 2010-06-25
    • Accepted : 2011-05-16
    • Published : 2011-08-31

    /

    DownLoad:  Full-Size Img  PowerPoint