Ma Jin, Zheng Xiangdong. Comparisons of boundary mixing layer depths determined by the empirical calculation and radiosonde profiles. J Appl Meteor Sci, 2011, 22(5): 567-576.
Citation: Ma Jin, Zheng Xiangdong. Comparisons of boundary mixing layer depths determined by the empirical calculation and radiosonde profiles. J Appl Meteor Sci, 2011, 22(5): 567-576.

Comparisons of Boundary Mixing Layer Depths Determined by the Empirical Calculation and Radiosonde Profiles

  • Received Date: 2010-11-24
  • Rev Recd Date: 2011-06-03
  • Publish Date: 2011-10-31
  • Mixing layer is one typical type of atmosphere boundary layer, and it is named after strong vertical mixing which leads to the nearly constant variables, such as potential temperature and water vapor in this layer. The depth of mixing layer is an important parameter to identify features of thermodynamics and atmospheric dynamics in the boundary layer, and also a key to monitor the air quality. Mixing layer has very distinct daily variation as different meteorological conditions and synoptic processes largely influence the structure of boundary layer. Mixing layer becomes thicker under clear sky conditions, while remains physically stable and almost invariant during a single day under cloudy or raining weather conditions. Therefore, measurements and calculation of mixing layer depth are worth studying.The depths of mixing layer at 14:00 of Beijing, Longfengshan, Lin'an, Aletai, Sanya, Xining and Tengchong are compared using two kinds of datasets: The Nozaki empirical method and the radiosonde observational data reduced by vertical profiles of potential temperature and refractivity. It shows that the two observational depths are in good agreement, and the radiosonde measurements of mixing layer can be seen as criteria in the comparison with the Nozaki empirical method. Few bad linear correlation points of mixing layer depth from potential temperature profiles and refractivity profiles indicate that depth of mixing layer determined by refractivity profiles sometimes cannot find out the actual mixing layer, possibly due to dramatic variation of refractivity profiles under stable atmosphere vertical structure conditions.The comparisons illustrate that the Nozaki method may reflect the daily variations of mixing layer as those shown in observational dataset. However, the Nozaki method underestimates mixing layer depth when the mixing layer is above 2000 m. On the contrary, it overestimates mixing layer depth when the mixing layer is lower than 1000 m. Nozaki method also overestimates mixing layer depth at the sites (Beijing, Longfengshan, Aleitai, Xining) located at higher latitudes, but underestimates mixing layer depth in the sites (Sanya, Lin'an, Tengchong) at lower latitudes. Errors of Nozaki method are smaller under cloudy (total cloud amount is about 3—7) weather conditions, while larger in clear days. The lack of considering terrain effect and the simplifying of physical process maybe sources of comparative error of Nozaki method. These results suggest that the empirical determination of mixing layer depth need more subtle consideration before extensive use.
  • Fig. 1  Typical potential temperature profiles to identify mixing layer depth (H1 denotes mixing layer depth)

    (a) in Beijing on 4 April 2005, (b) in Lin'an on 15 March 2001

    Fig. 2  Typical refractivity profiles to identify mixing layer depth (H1 denotes mixing layer depth; H2 denotes residual layer depth) (a) in Aletai on 9 May 2005, (b) in Sanya on 19 April 2004

    Fig. 3  Comparison of mixing layer depths determined by potential temperature and refractivity profiles, respectively

    Fig. 4  Mixing layer depths determined by potential temperature, refractivity profiles and Nozaki method at 7 sites

    Fig. 5  Comparison of mixing layer depths determined by Nozaki method and radiosonde profiles

    (a) Nozaki method vs potential temperature profiles, (b) Nozaki method vs refractivity profiles

    Fig. 6  Differences of mixing layer depths categorized by cloud cover of 7 sites

    Table  1  Land-cover types, delivering time of radiosonde balloons and quantities of balloons at 7 sites

    地点 地表状况 位置 海拔/m 臭氧探空气球
    放飞时间
    总样
    本量
    剔除
    样本量
    所用
    样本量
    气球放飞
    时间
    龙凤山 森林覆盖 44°N,127°E 160 2005-04-01—05-13 21 0 21 11:00—12:00
    北京 城市郊区 39°N,116°E 34 2002-01-11—01-23
    2005-04-11—05-15
    61
    6
    1
    0
    5
    16
    14:00
    14:00
    临安 森林覆盖 30°N,119°E 98 2001-02-21—04-11
    2004-04-05—05-19
    26
    19
    0
    0
    26
    19
    14:00
    14:00
    阿勒泰 平原郊区 47°N,88°E 737 2005-04-01—05-13 22 0 22 13:00—14:00
    三亚 海滨郊区 18°N,109°E 6 2004-04-02—05-21 24 1 23 14:00
    西宁 山地郊区 36°N,101°E 2296 1995-10-16—1996-08-03
    2002-01-08—01-28
    2005-04-04—05-13
    46
    9
    22
    1
    0
    2
    45
    9
    20
    10:00左右
    13:00—14:00
    13:00—14:00
    腾冲 高原郊区 25°N,98°E 1655 2004-04-03—05-19 20 1 19 14:00
    DownLoad: Download CSV

    Table  2  Variations of mixing layer depths between Nozaki method and measurements of radiosonde profiles

    混合层厚
    度范围/m
    Nozaki方法与位温
    廓线法差值/m
    Nozaki方法与折射
    系数法差值/m
    0~1000 443 553
    1000~2000 -65 -108
    2000~3000 -886 -931
    3000以上* -1449 -1201
    注:*由于3000 m以上厚度的混合层样本数比较少,所以3000 m以上混合层厚度归为一类。
    DownLoad: Download CSV

    Table  3  Mean and relative error of mixing layer depths determined by 3 methods at 7 sites

    地点 位温廓线法/m 折射系数法/m Nozaki方法/m Nozaki方法与位温
    廓线法相对误差
    Nozaki方法与折射
    系数法相对误差
    龙凤山 1125 1091 1266 0.13±0.53 0.33±0.78
    北京 1536 1450 1403 0.11±0.56 0.23±0.74
    临安 1597 1489 963 -0.26±0.51 -0.17±0.57
    阿勒泰 1136 1013 1790 0.82±0.86 0.99±0.89
    三亚 968 967 1091 0.29±0.57 0.30±0.54
    西宁 586 593 1422 2.27±2.07 2.19±1.98
    西宁 1798 1660 1927 0.31±0.74 1.02±3.11
    腾冲 1130 1172 1184 0.37±0.81 0.52±1.24
    注:① 为2002年1月的数据,② 为2005年4—5月的数据。
    DownLoad: Download CSV
  • [1]
    Stull R B.边界层气象学导论.北京:气象出版社, 1991:3-20.
    [2]
    Basha G, Ratnam M V.Identification of atmospheric boundary layer height over a tropical station using high resolution radiosonde refractivity profiles: Comparison with GPS Radio occultation measurements. J Geophys Res, 2009, 114, D16101, doi: 10.1029/2008JD011692.
    [3]
    Hennemuth B, Lammert A. Determination of the atmospheric boundary layer height from radiosonde and lidar backscatter. Boundary-Layer Meteorology, 2006, 120:181-200. doi:  10.1007/s10546-005-9035-3
    [4]
    Shaw W J, Pekour M S, Coulter R L, et al.The daytime mixing layer observed by radiosonde, profiler, and lidar during MILAGRO.Atmos Chem Phys Discuss, 2007, 7: 15025-15065. doi:  10.5194/acpd-7-15025-2007
    [5]
    Holzworth G C. Esimates of mean maximum mixing depths in the contiguous united states. Mon Wea Rev, 1964, 92: 235-242. doi:  10.1175/1520-0493(1964)092<0235:EOMMMD>2.3.CO;2
    [6]
    郑向东, 丁国安, 孙敏峰, 等.北京冬季低层大气O3垂直分布观测结果的研究.应用气象学报, 2002, 13(增刊):101-108. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=yyqx2002s1010&dbname=CJFD&dbcode=CJFQ
    [7]
    程水源, 张宝宁.混合层厚度的确定与计算方法研究.中国环境科学, 1997, 17(6):512-517. http://www.cnki.com.cn/Article/CJFDTOTAL-ZGHJ706.008.htm
    [8]
    廖国莲.混合层厚度的计算方法及影响因子.中山大学研究生学刊 (自然科学, 医学版), 2005, 26(4):66-72. http://www.cnki.com.cn/Article/CJFDTOTAL-YJSK200504009.htm
    [9]
    张文煜, 冯广泓.复杂地形上确定混合层厚度方法的探讨.兰州大学学报, 1995, 31(3):151-152. http://www.cnki.com.cn/Article/CJFDTOTAL-LDZK503.030.htm
    [10]
    程水源, 席德立.关于确定混合层厚度的几种方法.环境科学进展, 1997, 5(4):64-68. http://www.cnki.com.cn/Article/CJFDTOTAL-HJJZ704.007.htm
    [11]
    陈炯, 王建捷.北京地区夏季边界层结构日变化的高分辨模拟对比.应用气象学报, 2006, 17(4):403-411. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20060469&flag=1
    [12]
    卞林根, 程彦杰.北京大气边界层中风和温度廓线的观测研究.应用气象学报, 2002, 13(1):13-25. http://www.cnki.com.cn/Article/CJFDTOTAL-YYQX2002S1001.htm
    [13]
    崔克强.边界层湍流通量参数化方案.应用气象学报, 1997, 8(1):43-49. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=yyqx7s1.006&dbname=CJFD&dbcode=CJFQ
    [14]
    杨玉华, 徐祥德.北京城市边界层热岛的日变化周期模拟.应用气象学报, 2003, 14(1):61-68. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20030107&flag=1
    [15]
    Holzworth G C. Mixing Heights, Wind Speeds and Potential for Urban Air Pollution Through Contiguous United States. AP-101, US EPA.
    [16]
    Holzworth G C. Mixing depths, wind speeds and air pollution potential for selected locations in the United States. J Appl Meteorology, 1967, 6:1039-1044. doi:  10.1175/1520-0450(1967)006<1039:MDWSAA>2.0.CO;2
    [17]
    Nozaki K Y. Mixing Depth Model Vsing Hourly Surface Observations. Report 7053, USAF Environmental Technical Applications Center, 1973.
    [18]
    Cheng S Y, Huang G H, Chakma A, et al. Estimation of atmospheric mixing heights using data from airport meteorological stations. J Environ Sci Health, 2001, 36(4): 521-532. doi:  10.1081/ESE-100103481
    [19]
    Pasquill F. The estimation of the dispersion of windborne material. Meteorological Magazine, 1961, 90:33-49. https://www.pubfacts.com/detail/5707561/Blood-flow-of-the-cerebral-cortex-in-intracranial-hypertension
    [20]
    Stull R B.边界层气象学导论.北京:气象出版社, 1991: 402-403.
    [21]
    Garratt J R. Review of drag coefficients over oceans and continents. Mon Wea Rev, 1977, 105(7): 915. doi:  10.1175/1520-0493(1977)105<0915:RODCOO>2.0.CO;2
    [22]
    Thayer G G. An improved equation for radio refractive index of air. Radio Sci, 1974, 9:803-807. doi:  10.1029/RS009i010p00803
  • 加载中
  • -->

Catalog

    Figures(6)  / Tables(3)

    Article views (4991) PDF downloads(3219) Cited by()
    • Received : 2010-11-24
    • Accepted : 2011-06-03
    • Published : 2011-10-31

    /

    DownLoad:  Full-Size Img  PowerPoint