An Linchang, Sun Junying, Zhang Yangmei, et al. Characteristics of black carbon at wuqing observed by single particle soot photometer. J Appl Meteor Sci, 2011, 22(5): 577-583.
Citation: An Linchang, Sun Junying, Zhang Yangmei, et al. Characteristics of black carbon at wuqing observed by single particle soot photometer. J Appl Meteor Sci, 2011, 22(5): 577-583.

Characteristics of Black Carbon at Wuqing Observed by Single Particle Soot Photometer

  • Received Date: 2010-12-13
  • Rev Recd Date: 2011-06-15
  • Publish Date: 2011-10-31
  • Black carbon (BC) plays a significant role in climate change, which has attracts increasing research interest. Single Particle Soot Photometer (SP2) is used at Wuqing Meteorological Station in Tianjin. SP2 utilizes the high optical power available intra-cavity from a Nd:YAG laser as the analytical technique. Light absorbing particles, mainly BC in atmosphere, absorb sufficient energy and are heated to the point of incandescence. The energy emitted in this incandescence is measured, and quantitatively determine the mass of the particle. SP2 operates in a single particle mode, measuring the light scattering and incandescence of each particle. Through the time delay between the two signals, the mixing state of BC particles can be obtained. SP2 is different from the traditional filter-based method which could provide more accurate information on single BC particle properties. First, SP2 could count the BC particles individually, so BC number concentration could be given; second, SP2 measures the mass of each BC particle, which could be converted to particle size; finally, SP2 could give the information on BC mixing state, which is important for estimating the aerosol effect on climate change.The observation taken at Wuqing in December 2009 shows that the average number concentration of BC is 1504 cm-3, with the maximum 5050 cm-3and the minimum 46.8 cm-3. The number of BC particles occupies 57.2% of the aerosol particles measured by SP2. The average number concentration of non-absorbing aerosol is 1124 cm-3, with the maximum 3311 cm-3and the minimum 70.7 cm-3. The average mass concentration of BC is 8.15 μg/m3. 51.5% of BC particles are thickly coated. On a clear windy day, the daily average number concentration is 215 cm-3, the mass concentration is 1.17 μg/m3, and 40.2% of them are mixed. However in the seriously polluted case, the daily average number concentration is 3169 cm-3, the mass concentration reaches 17.2 μg/m3, and the ratio of mixed BC also increases to 78.7%.
  • Fig. 1  Calibration curve of BC mass and the peak height of LII signal of the broadband channel

    Fig. 2  Number concentrations of BC and non-light absorbing aerosols at Wuqing in Dec 2009

    (a) daily variation, (b) diurnal variation

    Fig. 3  Size distribution of BC at Wuqing in Dec 2009

    Fig. 4  Δt distribution of BC at Wuqing in Dec 2009

    Fig. 5  Number concentrations of BC and non-light absorbing aerosols (a) case 1, (b) case 2

    Fig. 6  Size distribution of BC (a) case 1, (b) case 2

    Fig. 7  Δt Distribution of BC (a) case 1, (b) case 2

  • [1]
    Streets D G, Bond T C, Carmichael G R, et al. An inventory of gaseous and primary aerosol emissions in Asia in the year 2000. J Geophys Res, 2003, 108(D21), 8809, doi: 10.1029/2002JD003093.
    [2]
    Bond T C, Streets D G, Yarber K F, et al. A technology-based global inventory of black carbon and organic carbon emissions from combustion. J Geophys Res, 2004, 109(D14203), doi: 10.1029/2003JD003697.
    [3]
    Kondo Y, Komazaki Y, Miyazaki Y, et al. Temporal variations of elemental carbon in Tokyo. J Geophys Res, 2006, 111(12205), doi: 10.1029/2005JD006257.
    [4]
    Park K, Kittelson D B, McMurry P H. Structural properties of diesel exhaust particles measured by transmission electron microscopy (TEM): Relationships to particle mass and mobility. Aerosol Sci Technol, 2004, 38: 881-889. doi:  10.1080/027868290505189
    [5]
    Park K, Kittelson D B, Zachariah M R, et al. Measurement of inherent material density of nanoparticle agglomerates. Nanoparticle Res, 2004, 6:267-272. doi:  10.1023/B:NANO.0000034657.71309.e6
    [6]
    Haywood J M, Roberts D L, Slingo A, et al. General circulation model calculations of the direct radiative forcing by anthropogenic sulfate and fossil-fuel soot aerosol. J Clim, 1997, 10: 1562-1577. doi:  10.1175/1520-0442(1997)010<1562:GCMCOT>2.0.CO;2
    [7]
    Myhre G, Stordal F, Restad K, et al. Estimation of the direct radiative forcing due to sulfate and soot aerosols. Tellus, 1998, 50: 463-477. doi:  10.3402/tellusb.v50i5.16230
    [8]
    Hansen J, Nazarenko L. Soot climate forcing via snow and ice albedos. Proc Natl Acad Sci, 2004, 101:423-428. doi:  10.1073/pnas.2237157100
    [9]
    Schnaiter M, Linke C, Mohler O, et al. Absorption amplification of black carbon internally mixed with secondary organic aerosol. J Geophys Res, 2005, 110(D19204), doi: 10.1029/2005JD006046.
    [10]
    Mikhailov E F, Vlasenko S S, Podgorny I A, et al. Optical properties of soot-water drop agglomerates: An experimental study. J Geophys Res, 2006, 111(D07209), doi: 10.1029/2005JD006389.
    [11]
    Fuller K A, Malm W C, Kreidenweis S M. Effects of mixing on extinction by carbonaceous particles. J Geophys Res, 1999, 104(D13):15941-15954. doi:  10.1029/1998JD100069
    [12]
    Jacobson M Z. Strong radiative heating due to the mixing state of black carbon in atmospheric aerosols. Nature, 2005, 409:695-697. http://europepmc.org/abstract/med/11217854
    [13]
    Robinson L M, Roberts D L. An interactive simulation of the direct radiative effect of black carbon aerosol in a climate model. J Aerosol Sci, 1998, 29 (Supp Ⅰ): 1201-1202. http://www.sciencedirect.com/science/article/pii/S0021850298907832
    [14]
    田华, 马建中, 李维亮.中国中东部地区硫酸盐气溶胶直接辐射强迫及气候效应的数值模拟.应用气象学报, 2005, 16(3):322-333. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20050341&flag=1
    [15]
    IPCC. The Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press, 2007: 153-171.
    [16]
    Weber R W. Short-term temporal variation in PM2.5mass and chemical composition during the Atlanta supersite experiment. J Air Waste Manag Assoc, 1999, 52: 1993-2003. https://www.ncbi.nlm.nih.gov/pubmed/12568257
    [17]
    Streets D G, Gupta S, Waldhoff S D, et al. Black carbon emissions in China. Atmos Environ, 2001, 35: 4281-4296. doi:  10.1016/S1352-2310(01)00179-0
    [18]
    吴涧, 符淙斌.近五年来东亚春季黑炭气溶胶分布输送和辐射效应的模拟研究.大气科学, 2005, 29(1):111-119. http://www.cnki.com.cn/Article/CJFDTOTAL-DQXK200501012.htm
    [19]
    曹国良, 张小曳, 王亚强, 等.中国大陆黑碳气溶胶排放清单.气候变化研究进展, 2006, 2(6):259-264. http://www.cnki.com.cn/Article/CJFDTOTAL-QHBH200606001.htm
    [20]
    汤洁, 温玉璞, 周凌晞.中国西部大气清洁地区黑碳气溶胶的观测研究.应用气象学报, 1999, 10(5):160-170. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=19990255&flag=1
    [21]
    许黎, 王亚强, 陈振林, 等.黑碳气溶胶研究进展Ⅰ:排放、清除和浓度.地球科学进展, 2006, 21(4):352-360. http://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ200604003.htm
    [22]
    孟昭阳, 张怀德, 蒋晓明, 等.太原冬季PM2.5中有机碳和元素碳的变化特征.应用气象学报, 2007, 18(4):524-531. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20070482&flag=1
    [23]
    颜鹏, 李维亮, 秦瑜.近年来大气气溶胶模式研究综述.应用气象学报, 2004, 15(5):629-640. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20040576&flag=1
    [24]
    Stephens M, Turner N, Sandberg J. Particle identification by laser-induced incandescence in a solid-state laser cavity. Appl Opt, 2003, 42(19): 3726-3736. doi:  10.1364/AO.42.003726
    [25]
    Baumgardner D, Kok G, Raga G. Warming of arctic lower stratosphere by light absorbing particles. Geophys Res Lett, 2004, 31(L06117), doi: 10.1029/2003GL018883.
    [26]
    Schwarz J P, Gao R S, Fahey D W, et al. Single-particle measurement of mid latitude black carbon and light-scattering aerosols from the boundary layer to the lower stratosphere. J Geophys Res, 2006, 111(D16207), doi: 10.1029/2006JD007076.
    [27]
    Slowik J G, Cross E, Han J, et al. An intercomparison of instruments measuring black carbon content and optical properties of soot particles. Aerosol Sci Technol, 2007, 44(3): 295-314. http://www.ingentaconnect.com/content/tandf/uast/2007/00000041/00000003/art00007
    [28]
    Gao R S, Schwarz J P, Kelly K K, et al. A novel method for estimating light-scattering properties of soot aerosols using a modified single-particle soot photometer. Aerosol Sci Technol, 2007, 41(2): 125-135. doi:  10.1080/02786820601118398
    [29]
    Nobuhiro M, Yutaka K. Effects of mixing state on black carbon measurements by laser-induced incandescence. Aerosol Sci Technol, 2007, 41(3):398-417. doi:  10.1080/02786820701199728
    [30]
    McMeeking G R, Hamburger T. Black carbon measurements in the boundary layer over western and northern Europe. Atmos Chem Phys, 2010, 10: 9393-9414. doi:  10.5194/acp-10-9393-2010
    [31]
    丁国安, 郑向东, 马建中, 等.近30年大气化学和大气环境研究回顾.应用气象学报, 2006, 17(6):796-814. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=200606128&flag=1
    [32]
    Zhang X Y, Wang Y Q, Zhang X C, et al. Carbonaceous aerosol composition over various regions of China during 2006. J Geophys Res, 2008, 113(D14111), doi: 10.1029/2007JD009525.
    [33]
  • 加载中
  • -->

Catalog

    Figures(7)

    Article views (3584) PDF downloads(2189) Cited by()
    • Received : 2010-12-13
    • Accepted : 2011-06-15
    • Published : 2011-10-31

    /

    DownLoad:  Full-Size Img  PowerPoint