Liao Rongwei, Zhao Ping. Interannual and interdecadal variations of winter water budgets in the East Asian monsoon humid region. J Appl Meteor Sci, 2011, 22(6): 641-653.
Citation: Liao Rongwei, Zhao Ping. Interannual and interdecadal variations of winter water budgets in the East Asian monsoon humid region. J Appl Meteor Sci, 2011, 22(6): 641-653.

Interannual and Interdecadal Variations of Winter Water Budgets in the East Asian Monsoon Humid Region

  • Received Date: 2010-11-10
  • Rev Recd Date: 2011-09-15
  • Publish Date: 2011-12-31
  • Using monthly means of NCAR/NCEP reanalysis datasets and rainfall data from 160 surface stations in China, a water budgets sequence over the East Asian Monsoon Humid Region is calculated by a water vapor transport method for the period from 1958 to 2007, referring to changes in water budgets associated with the anomalous atmospheric circulations and precipitation in the East Asia Monsoon Humid Region. Relationships between the water budget index and the variability of the atmospheric circulation and rainfall in China are examined. Results show that the established water budgets sequence displays the variability on the interannual and interdecadal scales. The higher-index values mainly occur in the 1960s and the 1980s and the low-index values mainly occur in the 1970s and the 1990s. The index reflects the variations of the meridional winds anomalies and indicates an intensity of winter monsoon and an anomaly of rainfall along the valleys in the East Asian Monsoon Humid Region. Corresponding to the higher-index values, the high pressure centering in Mongolia and the low pressure centering in the Aleutian Islands are weaker. Meanwhile, the southerly wind anomalies are prevailing in the lower troposphere in the East Asia and cyclonic circulation anomaly appears in the vertical troposphere over the mainland of China. This anomaly intensifies the convergence and upward motion to the south area of 30°N, driving the warm water vapor transport coming from the Bay of Bengal and the South China Sea, and increases the water budgets and precipitation, with the difference of rainfall above 40 mm. The anomalous water vapor transport mainly appears between 600 hPa and 900 hPa, where the western and southern boundaries are the major input regions, the eastern and northern boundaries are the major output regions. The anomalous water budget is larger in meridional than in zonal direction, accounting for 91.3% for the changes of net incoming and expenditure while the anomalous zonal water budget is smaller. So the main cause for the difference and significant anomaly for rainfall is the changes of the incoming and expenditure water budgets in meridional. The differences for water budgets and rainfall in north and south parts are significantly different, which contribute greatly to the changes of zonal income and expenditure. The inter-decadal variability of water budgets reflects the strength of the water vapor transport and the amount of water vapor from the ocean, and also indicates an anomaly of the interdecadal rainfall variation in the East Asian Monsoon Humid Region with a rainfall anomaly above 30 mm.
  • Fig. 1  The East Asian Monsoon Humid Region

    (22°—41°N, 105°—110°E, 110°—120°E)

    Fig. 2  The normalized temporal change of the water budgets in the East Asian Monsoon Humid Region during winter from 1958 to 2007

    Fig. 3  Difference in composites for winter water vapor transport and divergence between the high and low years in the East Asian Monsoon Humid Region (the shaded represents passing the test of 90% level) (a) water vapor transport, (b) water vapor transport divergence (unit: mm·d-1)

    Fig. 4  The correlation coefficient of winter water budgets and surface pressure in the East Asian Monsoon Humid Region (a), the high anomalies (b) and the low anomalies (c) of surface pressure (isoline, unit: hPa) and surface wind (vector) distributions

    (the grey area represents passing the test of 90% level, the thick dashed line represents the height of 1500 m)

    Fig. 5  Difference in composites for winter wind at 100 hPa between the high and low years (a), divergence at 100 hPa (unit: 107s-1)(b), geopotential height at 500 hPa (unit: gpm)(c) and winter wind at 850 hPa (d)

    (the grey area represents passing the test of 90% level; the black area represents terrain)

    Fig. 6  Difference in composites for winter water vapor transport divergence at 850 hPa between the high and low years (unit:10-5 kg·m-2·s-1)(a) and pseudo-equivalent temperature (unit: K), 22°—30°N average vertical velocity (unit: 10-2 Pa·s-1)(c) and pseudo-equivalent temperature (unit: K)(d), 110°—120°E average vertical velocity (unit:10-2 Pa·s-1)(e) and pseudo-equivalent temperature (unit: K)(f)

    (the grey area represents passing the test of 90% level; the black area represents terrain)

    Fig. 7  Difference in composites for the vertical distribution of winter water vapor transport in the border between the high and low years in the East Asian Monsoon Humid Region (unit: kg·m-1·s-1)

    (the grey area represents passing the test of 90% level; the black area represents terrain)

    Fig. 8  Difference in composites for winter precipitation between the high and low years (unit: mm)(a), the standard deviation of precipitation (unit: mm)(b), the correlation coefficient of precipitation and water vapor transport divergence (c) in the East Asian Monsoon Humid Region during winter from1958 to 2007

    (the grey area represents passing the test of 90% level)

    Fig. 9  The decade difference in composites for winter water vapor transport (a) and precipitation (unit:mm)(b) between the periods of 1986—1992 and 1973—1981 in the East Asian Monsoon Humid Region

    (the grey area represents passing the test of 90% level)

    Fig. 10  The winter normalized temporal change of the water budgets (a) and the correlation coefficient of water vapor transport divergence and water budgets in north (b), south (c) parts of the East Asian Monsoon Humid Region during winter from 1958 to 2007

    (the grey area represents passing the test of 90% level)

    Table  1  The water budgets and precipitation between high and low years in the East Asian Monsoon Humid Region

    距平 高值年 低值年 差值
    经向水汽收支/(104m3·s-1) 2.15 -2.68 4.83
    纬向水汽收支/(104m3·s-1) 0.44 -0.02 0.46
    水汽净收支/(104m3·s-1) 2.59 -2.70 5.29
    降水量/mm 7.3 -8.1 15.4
    DownLoad: Download CSV

    Table  2  The climatological mean of water budgets and precipitation in north and south parts of the East Asian Monsoon Humid Region

    区域 纬向水汽收支/(104m3·s-1) 经向水汽收支/(104m3·s-1) 区域水汽收支/(104m3·s-1) 降水量/mm
    北部区域 -3.72 1.65 -2.07 20.6
    南部区域 4.42 -1.58 2.84 53.2
    DownLoad: Download CSV
  • [1]
    陈隆勋, 朱乾根, 罗会邦, 等.东亚季风.北京:气象出版社, 1991.
    [2]
    赵平, 南素兰.气候和气候变化领域的研究进展.应用气象学报, 2006, 17(6):725-735. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=200606121&flag=1
    [3]
    赵平, 周秀骥.近40年我国东部降水持续时间和雨带移动的年代际变化.应用气象学报, 2006, 17(5):548-556. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20060594&flag=1
    [4]
    Rasmusson E M. Atmospheric water vapor transport and the water balance of North America. Part Ⅰ: Characteristics of the water vapor flux field. Mon Wea Rev, 1967, 95:403-426. doi:  10.1175/1520-0493(1967)095<0403:AWVTAT>2.3.CO;2
    [5]
    Rasmusson E M, Mo K C. Large-scale atmospheric moisture cycling as evaluated from NMC global analysis and forecast products. J Climate, 1996, 9:3276-3297. doi:  10.1175/1520-0442(1996)009<3276:LSAMCA>2.0.CO;2
    [6]
    Roads J O, Chen S C, Guetter A K, et al. Large-scale aspects of the United States hydrological cycle. Bull Amer Meteor Soc, 1994, 75:1589-1610. doi:  10.1175/1520-0477(1994)075<1589:LSAOTU>2.0.CO;2
    [7]
    Simmonds I, Bi D H, Hope P. Atmospheric water vapor flux and its association with rainfall over China in summer. J Climate, 1999, 12(5):1353-1367. doi:  10.1175/1520-0442(1999)012<1353:AWVFAI>2.0.CO;2
    [8]
    Ninomiya K. Moisture balance over China and the South China Sea during the summer monsoon in relation to the intense rain-falls over China. J Meteor Soc Japan, 1999, 77(3):737-751. doi:  10.2151/jmsj1965.77.3_737
    [9]
    Draper C, Mills G. The atmospheric water balance over a semi-arid river basin. Journal of Hydrometeorology, 2008, 9(3):521-534. doi:  10.1175/2007JHM889.1
    [10]
    Liu J, Stewart R. Water vapor fluxes over the Saskatchewan river basin. Journal of Hydrometeorology, 2003, 4(5):944-959. doi:  10.1175/1525-7541(2003)004<0944:WVFOTS>2.0.CO;2
    [11]
    Leung L R, Qian Y, Han J, et al. Intercomparison of global reana lysis and regional simulations of cold season water budgetss in the Western United States. Journal of Hydrometeorology, 2003, 4(6):1067-1087. doi:  10.1175/1525-7541(2003)004<1067:IOGRAR>2.0.CO;2
    [12]
    Ralph F, Neiman P, Wick G. Satellite and CALJET aircraft observations of atmospheric rivers over the eastern North Pacific Ocean during the winter of 1997/98. Mon Wea Rev, 2004, 132(7):1721-1745. doi:  10.1175/1520-0493(2004)132<1721:SACAOO>2.0.CO;2
    [13]
    Todd M, Washington R, Palmer P. Water vapour transport associated with tropical temperature trough systems over southern Africa and southwest Indian ocean. International Journal of Climatology, 2004, 24: 555-568. doi:  10.1002/(ISSN)1097-0088
    [14]
    Muoñz E, Busalacchi A J, Nigam S, et al. Winter and summer structure of the Caribbean low-level jet. J Climate, 2008, 21:1260-1267. doi:  10.1175/2007JCLI1855.1
    [15]
    Arraut J M, Satyamurty P. Precipitation and water vapor transport in the southern hemisphere with emphasis on the south American region. Journal of Applied Meteorolog and Climatology, 2009, 48(9):1902-1912. doi:  10.1175/2009JAMC2030.1
    [16]
    Knippertz P, Wernli H. A lagrangian climatology of tropical moisture exports to the northern hemispheric extratropics. J Climate, 2010, 23:987-1003. doi:  10.1175/2009JCLI3333.1
    [17]
    Schäfler A, Dörnbrack A, Kiemle C, et al. Tropospheric water vapor transport as determined from airborne lidar measurements. J Atmos Ocean Technol, 2010, 27(12): 2017-2030. doi:  10.1175/2010JTECHA1418.1
    [18]
    Sohn B J, Park S C. Strengthened tropical circulations in past three decades inferred from water vapor transport. J Geophys Res, 2010, 115, D15112, doi: 10.1029/2009JD013713.
    [19]
    黄荣辉, 张振洲, 黄刚, 等.夏季东亚季风区水汽输送特征及其与南亚季风区水气输送的差别.大气科学, 1998, 22 (4):460-469. http://www.cnki.com.cn/Article/CJFDTOTAL-DQXK804.007.htm
    [20]
    He J H, Sun C H, Liu Y Y, et al. Seasonal transition feature of large-scale moisture transport in the Asian-Australian monsoon region. Advances in Atmospheric Sciences, 2007, 24(1):1-14. doi:  10.1007/s00376-007-0001-5
    [21]
    范广洲, 程国栋.青藏高原隆升对西北干旱气候形成影响的模拟 (Ⅱ):水汽收支及高原动力、热力作用的影响.高原气象, 2003, 22(增刊):58-66. http://www.cnki.com.cn/Article/CJFDTOTAL-GYQX2003S1008.htm
    [22]
    徐祥德, 陈联寿, 王秀荣, 等.长江流域梅雨带水汽输送源-汇结构.科学通报, 2003, 48(21):2288-2294. doi:  10.3321/j.issn:0023-074X.2003.21.015
    [23]
    Zhang R H, Sumi A. Moisture circulation over east Asia during El Nino episode in northern winter, spring and autumn. J Meteor Soc Japan, 2002, 80(2):213-227. doi:  10.2151/jmsj.80.213
    [24]
    赵瑞霞, 吴国雄.黄河流域中上游水分收支以及再分析资料可用性分析.自然科学进展, 2006, 16(3):316-324. http://www.cnki.com.cn/Article/CJFDTOTAL-ZKJZ200603012.htm
    [25]
    赵瑞霞, 吴国雄.长江流域水分收支以及再分析资料可用性分析.气象学报, 2007, 65(3):416-427. doi:  10.11676/qxxb2007.039
    [26]
    简茂球, 陈蔚翔, 乔云亭, 等.广东大尺度大气水汽汇的年际及年代际变化特征.热带气象学报, 2007, 23(6):545-552. http://www.cnki.com.cn/Article/CJFDTOTAL-RDQX200706003.htm
    [27]
    张文君, 周天军, 宇如聪.中国东部水分收支的初步分析.大气科学, 2007, 31(2):329-345. http://www.cnki.com.cn/Article/CJFDTOTAL-DQXK200702014.htm
    [28]
    周长艳, 蒋兴文, 李跃清, 等.高原东部及邻近地区空中水汽资源的气候变化特征.高原气象, 2009, 28(1):55-63. http://cpfd.cnki.com.cn/Article/CPFDTOTAL-ZGQX200811003096.htm
    [29]
    丁一汇, 孙颖, 李跃凤, 等. 20世纪90年代东亚严重旱涝事件的大尺度条件分析//我国旱涝重大气候灾害及其形成机理研究.北京:气象出版社, 2003:260-275.
    [30]
    施小英, 施晓晖, 毛嘉富.夏季东亚地区水汽输送年代际变化特征及其对中国东部降水的影响.地理学报, 2009, 64(7):861-870. doi:  10.11821/xb200907010
    [31]
    施小英, 施晓晖.夏季青藏高原东南部水汽收支气候特征及其影响.应用气象学报, 2008, 19(1): 41-46. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20080108&flag=1
    [32]
    索渺清, 丁一汇.冬半年副热带南支西风槽结构和演变特征研究.大气科学, 2009, 33(3):425-442. http://www.cnki.com.cn/Article/CJFDTOTAL-DQXK200903002.htm
    [33]
    陈际龙, 黄荣辉.亚洲夏季风水汽输送的年际年代际变化与中国陆地旱涝的关系.地球物理学报, 2008, 51(2):352-359. http://www.cnki.com.cn/Article/CJFDTOTAL-DQWX200802008.htm
    [34]
    Yang W X, Li H Y, Li Z T, et al. Analysis on vapor field for the drought causes in Beijing, Tianjin and Hebei districts in recent years. Agricultural Science & Technology, 2010, 11 (1):117-121. http://en.cnki.com.cn/Article_en/CJFDTOTAL-HNNT201001042.htm
    [35]
    廖荣伟, 赵平.东亚季风湿润区水分收支的气候特征.应用气象学报, 2010, 21(6):649-658. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20100602&flag=1
    [36]
    谢安, 毛江玉, 宋焱云, 等.长江中下游地区水汽输送的气候特征.应用气象学报, 2002, 13(1):67-77. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20020108&flag=1
    [37]
    Huang R H, Zhou L T, Chen W. The progresses of recent studies of the variabilities of the East Asian monsoon and their causes. Adv Atmos Sci, 2003, 20:55-69. doi:  10.1007/BF03342050
    [38]
    Yanai M, Esbensen S, Chu J H. Determination of average bulk properties of tropical cloud clusters from larger-scale heat and moisture budgets. Journal of Atmospheric Science, 1973, 30 (4):611-627. doi:  10.1175/1520-0469(1973)030<0611:DOBPOT>2.0.CO;2
  • 加载中
  • -->

Catalog

    Figures(10)  / Tables(2)

    Article views (3685) PDF downloads(1459) Cited by()
    • Received : 2010-11-10
    • Accepted : 2011-09-15
    • Published : 2011-12-31

    /

    DownLoad:  Full-Size Img  PowerPoint