Zhang Wenxing, Lü Daren, Huo Juan, et al. Alidation of atmospheric radiative transfer model with field experiments using tethered-balloon-borne facilities. J Appl Meteor Sci, 2011, 22(6): 654-662.
Citation: Zhang Wenxing, Lü Daren, Huo Juan, et al. Alidation of atmospheric radiative transfer model with field experiments using tethered-balloon-borne facilities. J Appl Meteor Sci, 2011, 22(6): 654-662.

alidation of Atmospheric Radiative Transfer Model with Field Experiments Using Tethered-balloon-borne Facilities

  • Received Date: 2010-10-20
  • Rev Recd Date: 2016-01-13
  • Publish Date: 2011-12-31
  • Atmospheric radiative transfer and its algorithms are the theoretical basis and effective tools in the field of remote sensing and inversion algorithm in the earth system, and also the key tools for the space,ground target recognition and quantitative assessment of background radiation. During recent decades, a series of radiative transfer(RT) model have been proposed to support a large variety of quantitative remote sensing as well as target,background discrimination research and applications. Owing to respective approximations and simplifications inherent in those RT models, their accuracy, uncertainty and adaptability are of critical significance to different researchers and end users. Validation of the RT model for its different wave band, in particular by using field experiments is necessary, especially for those applications with higher accuracy demands. Among the RT codes currently used, a considerable part of them are MODTRAN and its evolution versions. In China, MODTRAN has also been applied to the study of remote sensing, atmospheric correction of satellite images, and a wide range of applications in the atmospheric sciences, hence, the validation mainly focuses on MODTRAN model and the thermal infrared window 8—14 μm (714~1250 cm-1) band first of all. Due to little atmospheric absorption in the infrared window band and very low radiance, this band is a range of wavelengths to which the Earth's atmosphere is relatively transparent, and is an important band used for space,ground target recognition, and ground/satellite-based remote sensing as well. Because the spectral composition of radiation transfer varies greatly with varying local environmental conditions, such as aerosol characteristics, water vapor content, surface temperature, greenhouse gases and so on, the accuracy that MODTRAN demonstrates should be attained by making the comparisons between observed radiances and the radiances computed from coincident in situ profile data. For field experiment validation, a scheme is proposed, using a special patented tethered balloon as platform and a combined sensor system consisting of both meteorological (GPS radiosonde, aerosol particle spectrometer, ozonesonde) and radiation observation instruments (visible and broadband thermal infrared imager), as well as wireless receiver,transmitter. Field experiments are conducted in August 2006 at IAP's Xianghe Observatory. During the process the tethered balloon going up and down in the atmosphere of boundary layer, measurements of both meteorological and radiation instruments at different height are carried out simultaneously. Using the observed meteorological parameters as input to RT model (MODTRAN 4.0), comparisons between observed radiances and radiances output from the model are used to validate the accuracy of the RT algorithm. The balloon is launched and drawn back for 16 times to do the validation. Analysis on the experiment results show that in thermal infrared wave band, the statistical results of the root-mean-square error of relative error between model output (with real-time meteorological parameters as input) and simultaneous radiance measurements is less than ±3%
  • Fig. 1  Schematic diagram of tethered-balloon-based facilities

    Fig. 2  Seasonal variation of the vertical distribution of thermal infrared brightness temperature in zenith direction over Beijing(unit: ℃) (a) VIS=23 km, (b) VIS=3 km

    Fig. 3  Variation of zenith looking thermal infrared brightness temperature with height and surface visibility over Beijing for different seasons(unit:℃)

    Fig. 4  Flow chart of thermal infrared radiation data processing

    Fig. 5  Model output of zenith looking thermal radiation with height by using tethered-balloon borne observation within 1 km and morning and evening radiosonding profiles on 15 August 2006

    Fig. 6  Comparion of model output and field observation of infrared radiances for clear sky during 17:19—17:45 on 15 August 2006

    Fig. 7  Comparion of model output and field observation of infrared radiances for overcast sky during 14:18—14:37 on 24 August 2006

    Fig. 8  Comparion of model output and field observation of infrared radiances for broken cloudy sky during 18:08—18:26 on 23 August 2006

    Table  1  Meteorological conditions during field experiments

    实验
    序号
    起始时间 气艇
    状态
    天气云况 云量/成 地面能
    见度/km
    数据及处理
    1 08-12T20:31 上升 阴, 层状云 10 1 由于上升中至少3层不同高度云过顶,过于复杂,
    2 08-12T21:18 下降 阴, 层状云 10 1 未处理600 m以下处于同一云层下,600~1000 m有云层变化
    3 08-15T15:27 上升 20 1000 m以下均合适
    4 08-15T15:53 下降 20 1000 m以下均合适
    5 08-15T17:19 上升 20 1000 m以下均合适
    6 08-15T17:46 下降 20 200~1000 m合适,200 m以下姿态可能不稳
    7 08-17T12:50 上升 层状云 10 5 间歇于2块云层下,分别于不同云底高度下
    8 08-17T13:14 下降 层状云 10 5 500 m以下与850 m以上同一天空,550~750 m为同一云层
    9 08-21T15:32 上升 毛卷云 2 5 650 m以下合适
    10 08-21T15:55 下降 毛卷云 2 5 550 m以下合适
    11 08-21T17:12 上升 毛卷云, 密卷云 3 10 700 m以下合适
    12 08-21T17:23 下降 毛卷云, 密卷云 3 10 400~750 m合适, 100~400 m合适
    13 08-23T15:04 上升 毛卷云 2 4 550 m以下、900~1050 m合适
    14 08-23T15:25 下降 毛卷云 2 4 1000 m以下合适
    15 08-23T15:40 上升 毛卷云 2 4 1000 m以下合适
    16 08-23T15:54 下降 毛卷云 2 4 600~1000 m、550 m以下合适
    17 08-23T17:00 上升 毛卷云 2 4 云况十分复杂,处于有云、无云变化状态
    18 08-23T17:14 下降 毛卷云 2 4 云况太复杂,无法处理
    19 08-23T17:35 上升 毛卷云 2 4 云有一定复杂性,800 m以下基本合适
    20 08-23T18:08 下降 毛卷云 2 4 850 m以下合适
    21 08-23T18:52 上升 毛卷云 2 5 1000 m以下合适
    22 08-23T19:05 下降 毛卷云 2 5 900 m以下合适
    23 08-24T11:29 上升 高积云 10 3 1000 m以下合适
    24 08-24T11:46 下降 高积云 10 3 云况太复杂,无法处理
    25 08-24T13:39 上升 高积云, 高层云 10 3 云况太复杂,无法处理
    26 08-24T13:53 下降 高积云, 高层云 10 3 400 m以下合适
    27 08-24T14:18 上升 高积云, 高层云 8 4 850 m以下合适
    28 08-24T14:38 下降 高积云, 高层云 8 4 云况太复杂,无法处理
    29 08-24T15:29 上升 高积云, 高层云 8 4 1000 m以下合适
    30 08-24T15:40 下降 高积云, 高层云 8 4 1000 m以下合适
    31 08-24T16:19 上升 高积云, 高层云 6 5 云况太复杂,无法处理
    32 08-24T16:35 下降 高积云, 高层云 6 5 600 m以下合适
    DownLoad: Download CSV

    Table  2  Statistical result of the validation

    试验序号 时间 气艇状态 对比高度范围 晴空或云下 相对误差均方差/%
    2 08-12T21:18 下降 地面~800 m 云下 1.59
    3 08-15T15:27 上升 地面~1014 m 4.82
    4 08-15T15:53 下降 地面~904 m 2.00
    5 08-15T17:19 上升 地面~1029 m 1.59
    6 08-15T17:46 下降 200~ 984 m 3.55
    8 08-17T13:14 下降 地面~506 m,
    530~723 m
    云下 1.53
    2.80
    9 08-21T15:32 上升 地面~ 663 m 云下 3.49
    10 08-21T15:55 下降 地面~ 545 m 云下 2.04
    11 08-21T17:12 上升 地面~ 667 m 云下 2.46
    12 08-21T17:23 下降 400~727 m 云下 2.41
    13 08-23T15:04 上升 地面~486 m,
    898~1036 m
    云下 0.87
    2.07
    14 08-23T15:25 下降 地面~486 m 云下 4.56
    15 08-23T15:40 上升 地面~1003 m 云下 3.34
    16 08-23T15:54 下降 地面~549 m,
    632~1023 m
    云下 3.06
    2.56
    19 08-23T17:35 上升 地面~767 m 云下 3.87
    20 08-23T18:08 下降 119~849 m 云下 2.45
    21 08-23T18:52 上升 地面~784 m 云下 3.27
    22 08-23T19:05 下降 107~908 m 云下 4.60
    23 08-24T11:29 上升 地面~1130 m 云下 3.23
    26 08-24T13:53 下降 地面~389 m 云下 1.02
    27 08-24T14:18 上升 地面~848 m 云下 0.89
    29 08-24T15:29 上升 98~1026 m 云下 6.74
    30 08-24T15:40 下降 地面~1030 m 云下 5.95
    32 08-24T16:35 下降 地面~601 m 云下 2.31
    DownLoad: Download CSV
  • [1]
    邱金桓.用于空间对地遥感的一个参数化辐射传输计算模式.大气科学, 1998, 22(4):649-658. http://www.cnki.com.cn/Article/CJFDTOTAL-DQXK804.023.htm
    [2]
    吕达仁, 王普才, 邱金桓, 等.大气遥感与卫星气象学研究的进展与回顾.大气科学, 2003, 27(4):552-566. http://www.cnki.com.cn/Article/CJFDTOTAL-DQXK200304008.htm
    [3]
    Spurr R J D, Kurosu T P, Chance K. A linearized discrete ordinate radiative transfer model for atmospheric remote-sensing retrieval. Journal of Quantitative Spectroscopy & Radiative Transfer, 2001, 68:689-735. http://web.gps.caltech.edu/~vijay/Papers/RT%20Models/LIDORT4.pdf
    [4]
    Eldering A, Irion F W, Chang A Y, et al. Vertical profiles of aerosol volume from high-spectral-resolution infrared transmission measurements. I. Methodology. Applied Optics, 2001, 40(18):3082-3091. doi:  10.1364/AO.40.003082
    [5]
    Ricchiazzi P, Yang S, Gautier C, et al. SBDART: A Research and Teaching Software Tool for Plane-Parallel Radiative Transfer in the Earth's Atmosphere. Bull Amer Meteor Soc, 1998, 79(10):2101-2114. doi:  10.1175/1520-0477(1998)079<2101:SARATS>2.0.CO;2
    [6]
    Clough S A, Shephard M W, Mlawer E J, et al. Short communication Atmospheric radiative transfer modeling: A summary of the AER codes. Journal of Quantitative Spectroscopy & Radiative Transfer, 2005,91:233-244. http://www.sciencedirect.com/science/article/pii/S0022407304002158
    [7]
    Mayer B, Kylling A. Technical note: The libRadtran software package for Radiative transfer calculations-description and examples of use. Atmospheric Chemistry and Physics Discussions, 2005, 5:1319-1381. doi:  10.5194/acpd-5-1319-2005
    [8]
    Guanter L, Richter R, Kaufmann H. On the application of the MODTRAN4 atmospheric Radiative transfer code to optical remote sensing. International Journal of Remote Sensing, 2009, 30(6):1407-1424. doi:  10.1080/01431160802438555
    [9]
    孙毅义, 董浩, 毕朝辉, 等.大气辐射传输模型的比较研究.强激光与粒子束, 2004, 16(2):149-153. http://www.cnki.com.cn/Article/CJFDTOTAL-QJGY200402004.htm
    [10]
    延昊, 矫梅燕, 王建林, 等.热红外通道沙尘识别及敏感性分析.应用气象学报, 2005, 16(2):238-272. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20050229&flag=1
    [11]
    张杰, 王介民, 郭铌.应用6S模式对EOS MODIS可见光到中红外波段的大气订正.应用气象学报, 2004, 15(6):651-657. http://www.cnki.com.cn/Article/CJFDTOTAL-YYQX200406001.htm
    [12]
    田庆久, 郑兰芬, 童庆禧.基于遥感影像的大气辐射校正和反射率反演方法.应用气象学报, 1998, 9(4):456-461. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=19980467&flag=1
    [13]
    Berk A, Anderson G P, Bernstein L S, et al. MODTRAN4 Radiative Transfer Modeling for Atmospheric Correction. SPIE Proceeding, Optical Spectroscopic Techniques and Instrumentation for Atmospheric and Space Research Ⅲ, 1999:348-353.
    [14]
    张广顺, 张玉香, 吴承权, 等.红外窗区大气透过率的测量.应用气象学报, 1993, 4(2):212-217. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=19930237&flag=1
    [15]
    陈秀红, 魏合理, 吕炜煜, 等. CART软件计算的红外大气透过率和实测值比较.激光与红外, 2009, 39(4):403-406. http://www.cnki.com.cn/Article/CJFDTOTAL-JGHW200904019.htm
    [16]
    Tjemkesa S A, Pattersona T, Rizzib R, et al. The ISSWG line-by-line inter-comparison experiment. Journal of Quantitative Spectroscopy & Radiative Transfer, 2003, 77:433-453. http://www.sciencedirect.com/science/article/pii/S0022407302001747
    [17]
    Clough S A, Shephard M W, Mlawer E J, et al. Short communication Atmospheric Radiative transfer modeling: A summary of the AER codes. Journal of Quantitative Spectroscopy & Radiative Transfer, 2005, 91: 233-244.
    [18]
    Strow L L, Hannon S E, De-Souza M S, et al. Validation of the Atmospheric Infrared Sounder Radiative transfer algorithm. J Geophys Res, 2006, 111, D09S06, doi: 10.1029/2005JD006146.
    [19]
    吕达仁,王勇,李立群,等. 一种系留气艇地空全景摄像与成像装置. 专利证书号第609139,中华人民共和国国家知识产权局.2004.
    [20]
    杨贵军, 高中灵, 黄文江, 等.可见光-近红外波段大气上行与下行辐射分量参数化方法.遥感学报, 2010, 14(4): 637-662. http://www.cnki.com.cn/Article/CJFDTOTAL-YGXB201004005.htm
  • 加载中
  • -->

Catalog

    Figures(8)  / Tables(2)

    Article views (2994) PDF downloads(1479) Cited by()
    • Received : 2010-10-20
    • Accepted : 2016-01-13
    • Published : 2011-12-31

    /

    DownLoad:  Full-Size Img  PowerPoint