云底高度~云顶高度/km | 1~4 | 2~5 | 3~6 | 4~7 | 5~8 | 6~9 | 7~10 |
云顶黑体亮温/K | 272.05 | 266.14 | 260.03 | 253.85 | 247.63 | 241.4 | 235.15 |
Citation: | Chen Yingying, Tang Renmao, Zhou Yuquan, et al. Interpretation of cloud classification using the color image composed by three-channel data. J Appl Meteor Sci, 2011, 22(6): 691-697. |
Table 1 Brightness temperature as a function of cloud top height solar zenith angle θ0=20°, satellite zenith angle θ=40°, relative azimuth angle ϕ=0°
云底高度~云顶高度/km | 1~4 | 2~5 | 3~6 | 4~7 | 5~8 | 6~9 | 7~10 |
云顶黑体亮温/K | 272.05 | 266.14 | 260.03 | 253.85 | 247.63 | 241.4 | 235.15 |
Table 2 Reflectance of some main types of the cloud and underlying surface[15]
云和地面目标物 | 可见光通道反射率 |
积雨云 (大而厚) | 0.92 |
积雨云 (小,云顶在6 km左右) | 0.86 |
卷层云 (厚,下面有中低云和降水) | 0.74 |
卷层云 (单独出现在陆地上空) | 0.32 |
积云 (出现在陆地上空,云量>80%) | 0.69 |
中云 (高层、高积云,中等厚度) | 0.68 |
层积云 (出现在陆地上空,云量>80%) | 0.68 |
层积云 (出现在洋面上空,成片) | 0.60 |
层云 (厚,出现在洋面上空) | 0.64 |
层云 (薄,出现在洋面上空) | 0.42 |
卷云 (薄,单独出现在陆地上空) | 0.36 |
晴天积云 (出现在陆地上空,云量>80%) | 0.29 |
陆地 (植被) | 0.18 |
海洋、湖泊、河流 | 0.07~0.09 |
Table 3 Effective particle radius of different cloud types
云类 | 层云 (海洋上空) | 层云 (陆地上空) | 晴天积云 | 海洋积云 | 积雨云 | 浓积云 | 高层云 |
re/μm | 17 | 10 | 6.7 | 25 | 33 | 40 | 8 |
Table 4 Characteristic three-channel values of the typical cloud system pixel
编码 | RGB色彩模式强度值 | R0.65 | R1.64 | T11.25 | 云的分类解释判读 |
A | (248,98,37) | 0.975 | 0.311 | 209.298 | 积雨云(台风眼墙) |
B | (139,98,36) | 0.532 | 0.311 | 208.344 | 厚卷云(台风螺旋云带) |
C | (234,92,30) | 0.918 | 0.289 | 202.21 | 积雨云(局地对流) |
D | (182,75,69) | 0.707 | 0.227 | 233.568 | 中云(浓积云) |
E | (178,229,128) | 0.691 | 0.793 | 263.753 | 厚低云(云体深厚的水云) |
F | (108,95,60) | 0.406 | 0.3 | 227.657 | 薄卷云 |
G | (78,122,193) | 0.284 | 0.4 | 288.383 | 薄低云(水云) |
H | (35,42,192) | 0.110 | 0.105 | 288.044 | 晴天海洋 |
I | (44,89,218) | 0.146 | 0.278 | 296.566 | 晴天陆地 |
[1] |
Kokkler R, Decotiis A G, Rao P K. A procedure for estimating cloud amount and height from satellite infrared radiation data. Mon Wea Rev, 1973, 101(2):240-243. doi: 10.1175/1520-0493%281973%29101<0240%3AAPFECA>2.3.CO%3B2
|
[2] |
Desbois M, Seze G, Szejwach G. Automatic classification of clouds on METEOSAT imagery application to high-level clouds. J Appl Meteor, 1982, 21(3):401-402. doi: 10.1175/1520-0450(1982)021<0401:ACOCOM>2.0.CO;2
|
[3] |
Welch R M, Navar M S, Sengupta S K. The effect off resolution upon texture-based cloud field classification. J Geophys Res, 1989, 94(6):14767-14781.
|
[4] |
师春香, 吴蓉璋, 项续康.多阈值和神经网络卫星云图云系自动分割试验.应用气象学报, 2001, 12(1):70-78. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20010108&flag=1
|
[5] |
白慧卿, 方宗义, 吴蓉璋.基于人工神经网络的GMS云图四类云系的识别.应用气象学报, 1998, 9(4):402-409. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=19980460&flag=1
|
[6] |
李伟钢, 石立华.气象卫星云图的多分辨小波分解及人工神经网络降水估计研究.南京气象学院学报, 2000, 23(2):277-282. http://www.cnki.com.cn/Article/CJFDTOTAL-NJQX200002017.htm
|
[7] |
吴咏明, 张韧.多光谱卫星图像的一种模糊聚类方法.热带气象学报, 2004, 20(6):689-696. http://www.cnki.com.cn/Article/CJFDTOTAL-RDQX200406008.htm
|
[8] |
孙学金, 刘磊, 高太长, 等.基于模糊纹理光谱的全天空红外图像云分类.应用气象学报, 2009, 20(2):157-163. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20090204&flag=1
|
[9] |
周著华, 白洁, 刘健文, 等.MODIS多光谱云相态识别技术的应用研究.应用气象学报, 2005, 16(5):678-684. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20050587&flag=1
|
[10] |
洪梅, 张韧, 孙照渤.多光谱卫星云图的高维特征聚类与降水天气判别.遥感学报, 2006, 10(2):184-190. http://www.cnki.com.cn/Article/CJFDTOTAL-YGXB200602005.htm
|
[11] |
马芳, 张强, 郭妮, 等.多通道卫星云图云检测方法的研究.大气科学, 2007, 31(1):119-128. http://www.cnki.com.cn/Article/CJFDTOTAL-DQXK200701011.htm
|
[12] |
刘希, 许健民, 杜秉玉, 等.用双通道动态阈值对GMS-5图像进行自动云检测.应用气象学报, 2005, 16(4):434-444. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20050454&flag=1
|
[13] | |
[14] |
Rosenfeld D, Lensky I M. Satellite-based insights into precipitation formation processes in continental and maritime convective clouds. Bull Amer Meteor Soc, 1998, 79: 2457-2476. doi: 10.1175/1520-0477(1998)079<2457:SBIIPF>2.0.CO;2
|
[15] |
陈渭民.卫星气象学.北京:气象出版社, 2003.
|