Yang Ping, Liu Weidong, Zhong Jiqin, et al. Evaluating the quality of temperature measured at automatic weather stations in Beijing. J Appl Meteor Sci, 2011, 22(6): 706-715.
Citation: Yang Ping, Liu Weidong, Zhong Jiqin, et al. Evaluating the quality of temperature measured at automatic weather stations in Beijing. J Appl Meteor Sci, 2011, 22(6): 706-715.

Evaluating the Quality of Temperature Measured at Automatic Weather Stations in Beijing

  • Received Date: 2011-04-19
  • Rev Recd Date: 2011-10-14
  • Publish Date: 2011-12-31
  • Data quality is a basic assurance for meteorological researches and data applications. Considering data integrality, veracity and confidence, the standard for AWS (automatic weather station) data quality assessment is defined band a set of index is established for AWS data quality assessment and a feasible observation data quality control flow is designed. Following the definition and principia, AWS data can be categorized as correct, mistake and dubious data. The spatial and temporal consistent detections are employed in the data quality control flow. Based on the quality control flow and assessment index, hourly data measured by 187 AWS in Beijing from 1998 to 2009 is evaluated. The results show that the AWS net of Beijing is set up following a fine layout. Although the distribution of AWS is uneven, most AWS is located in urban area such as Haidian and Chaoyang districts, especially in early time of the AWS construction process, some AWS are set up in mountainous area according to the need of different region representative. It is beneficial for urban and rural climate comparing, data sequence reconstruction and regional climate research. The severe missing data is rare, and discrete and slight continuous missing data is just found in concentrated regions and with regional consistent characteristic. The highest error rate of AWS temperature data is 3.8% and it is below 1% in most years. The amount of dubious data is much more than the mistaking data. But more than half of dubious data can be got back after space consistency check. It means that the AWS data in Beijing is reliable. The rates of mistaken data are above 20% after 2004. It shows that the amount of dubious data is not related with the rate of mistake data and on the other hand the uncertainty of AWS data set is reduced after 2004. In conclusion, the assessment result reveals that the AWS data in Beijing are accurate, reliable and show great potential in the future application.
  • Fig. 1  Flow chart of quality evaluation about temperature

    Fig. 2  Results of Beijing AWS's working length (a) the number of sites with first working year, (b) the distribution of AWS's working length

    (figures stand for the working length, unit:a; +:10 a, E:11 a, T:12 a)

    Fig. 3  Spatial distribution of frequency of temperature data-lacking per year on different type

    (a) discrete, (b) mild continuous, (c) moderate continuous, (d) serious continuous

    Fig. 4  Interannual variation of error data (a) extreme value error, (b) unchangeable error, (c) jumping error, (d) entire error

    Fig. 5  Interannual variation of suspicious data

    (a) average suspicious numbers per station, (b) average determiated error numbers per station, (c) the ratio of determinated error data

    Fig. 6  The distribution of annual average error numbers

    (a) error check, (b) suspect check, (3) determinated error data

    Fig. 7  Annual ratio of data-lacking before and after the assessment of quality

    Table  1  Classification and definication of data-lacking

    缺测类型 定义 缺测值个数范围
    离散型 缺测量的邻近时刻均为非缺测量
    轻度连续型 连续缺测值个数不高于1 d的总时次 [2,24]
    中度连续型 连续缺测值个数介于1 d和1个月总时次之间 (24,720]
    重度连续型 连续缺测值个数超过1个月的总时次 (720,+∞)
    DownLoad: Download CSV
  • [1]
    中国气象局.地面气象观测数据文件和记录薄表格.北京:气象出版社, 2005:18-26.
    [2]
    Lanzante J R. Resistant, robust and nonparametric techniques for the analysis of climate data: Theory and examples, including applications to historical radiosonde station data. Int J Climatol, 1996, 16:1197-1226. doi:  10.1002/(ISSN)1097-0088
    [3]
    张强, 郭发辉, 许松.全球地面天气爆资料质量控制和数据集特征分析.应用气象学报, 2004, 15(增刊):121-127. http://www.cnki.com.cn/Article/CJFDTOTAL-YYQX2004S1017.htm
    [4]
    Eischeid J K, Baker C B, Karl T R. The quality control of longterm climatological data using objective data analysis. J Appl Meteor, 1995, 34: 2787-2795. doi:  10.1175/1520-0450(1995)034<2787:TQCOLT>2.0.CO;2
    [5]
    Guttman R N B, Baker C B. Exploratory analysis of the difference between temperature observations recorded by ASOS andconventional methods. Bull Amer Meteor Soc, 1996, 77: 2865-2873. doi:  10.1175/1520-0477(1996)077<2865:EAOTDB>2.0.CO;2
    [6]
    周自江, 艾秀, 张洪政.沙尘暴常规观测资料中若干问题的解析.应用气象学报, 2004, 15(增刊):60-67. http://www.cnki.com.cn/Article/CJFDTOTAL-YYQX2004S1009.htm
    [7]
    刘小宁, 任芝花, 王颖.自动观测和人工观测地面温度差异及其分析.应用气象学报, 2008, 19(5):554-563. doi:  10.11898/1001-7313.20080506
    [8]
    任芝花, 熊安元.地面自动站观测资料三级质量控制业务系统的研制.气象, 2007, 33(1):19-24. doi:  10.7519/j.issn.1000-0526.2007.01.003
    [9]
    庄立伟, 王石立.东北地区逐日气象要素的空间插值方法应用研究.应用气象学报, 2003, 14(5):605-615. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20030575&flag=1
    [10]
    李庆祥, 刘小宁, 张洪政, 等.定点观测气候序列的均一性研究.气象科技, 2003, 31(1):3-10. http://www.cnki.com.cn/Article/CJFDTOTAL-QXKJ200301000.htm
    [11]
    方炳兴.常规气象资料质量的综合控制.气象, 1994, 20(2):33-36. doi:  10.7519/j.issn.1000-0526.1994.02.006
    [12]
    邹燕, 赵平.几种台风资料的对比及台风年鉴数据的订正.热带气象学报, 2009, 25(3):295-299. http://www.cnki.com.cn/Article/CJFDTOTAL-RDQX200903006.htm
    [13]
    王伯民.基本气象资料质量控制综合判别法的研究.应用气象学报, 2004, 15(增刊):50-59. http://www.cnki.com.cn/Article/CJFDTOTAL-YYQX2004S1008.htm
    [14]
    刘小宁, 鞠晓华, 范邵华.空间回归检验方法在气象资料质量检验中的应用.应用气象学报, 2006, 17(1):37-43. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20060106&flag=1
    [15]
    王颖, 刘小宁.自动站与人工观测气温的对比分析.应用气象学报, 2002, 13(6):741-748. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20020697&flag=1
    [16]
    封秀燕, 何志军, 王荷平, 等.自动站实时资料质量控制开放式平台设计.应用气象学报, 2010, 21(4):506-512. doi:  10.11898/1001-7313.20100415
  • 加载中
  • -->

Catalog

    Figures(7)  / Tables(1)

    Article views (4039) PDF downloads(1648) Cited by()
    • Received : 2011-04-19
    • Accepted : 2011-10-14
    • Published : 2011-12-31

    /

    DownLoad:  Full-Size Img  PowerPoint