Zhang Ziyin, Ma Jingjin, Lei Yangna. Beijing electric power load and its relation with meteorological factors in summer. J Appl Meteor Sci, 2011, 22(6): 760-765.
Citation: Zhang Ziyin, Ma Jingjin, Lei Yangna. Beijing electric power load and its relation with meteorological factors in summer. J Appl Meteor Sci, 2011, 22(6): 760-765.

Beijing Electric Power Load and Its Relation with Meteorological Factors in Summer

  • Received Date: 2010-12-17
  • Rev Recd Date: 2011-06-17
  • Publish Date: 2011-12-31
  • Power security with stability is essential for normal operations of modern cities which guarantee industrial productions, communication, transportations, daily lives and so on. For the specificities of modern grid (electric power system), a local accident can spread to the entire electric grid instantaneously, and usually results in huge economic losses. The abnormal increase of power load can often cause an accident for the power grid. The power grid of Beijing is a typical receiving end grid, obtaining about two thirds of its demand from North China Power Grid. So an accurate prediction for the electricity load Beijing is very important for power dispatching and safety operation of the entire grid. However, the electricity load may be influenced by a combined effect of many complex factors, such as the industrial and agricultural productions, transportations, daily lives, weather and climate. The different factors may take different effects on the power load variability on various timescales. Major achievements are made through previous research, but it is still a challenge today to predict accurately the power load variability, especially in the daily time scales. A further and quantitative study on the daily power load variability and its main factors would be helpful for the precise prediction.Based on the daily electric power load and meteorological data of Beijing during the period from January 2006 to September 2010, an analysis is implemented with statistical method aiming for better understanding electric power load of Beijing and its main affecting factors in summer. The results indicate that temperature, wind speed and relative humidity are the major factors which are significantly correlated with the maximum electric power load in summer. Among these factors, the daily minimum temperature is the most influencing factor with a correlation coefficient of 0.65 and significance at 0.001 level. Considering the 1℃ effect for energy consumption, the daily maximum electric power load would increase 39.7×107W with temperature rising 1℃ when the daily maximum temperature is higher than 26℃, or when the daily minimum temperature is higher than 18℃. Using the statistical regression model can roughly predict the maximum power load fluctuations. It can provide some reference for the power allocation decision in advance. Moreover, the effects of temperature humidity index (ITH) on the variability of electric power load are also checked, where ITH are expected to quantify the degree of human body comfort. The outcomes suggest that the ITH can improve the explained variance of the daily maximum electric power load than a single temperature factor.
  • Fig. 1  The daily maximum, mean and minimum power load of Beijing in the past five years

    Fig. 2  Comparisons of the daily maximum power load and the meteorological factors from May to September averaged during the past five years

    (thick line: low frequency variations)

    Fig. 3  Scatter diagram for the daily maximum power load and the daily mean temperature

    Table  1  Correlation coefficients of power load and meteorological factors

    相关系数 平均气温 最高气温 最低气温 平均风速 平均相对湿度 降水量 日照时数 闷热指数
    r1 0.63 0.51 0.65 -0.19 0.19 0.02 -0.01 0.67
    r2 0.32 0.23 0.28 -0.02 -0.05 -0.10 0.01 0.32
    注:r1为原始相关系数,r2为高通滤波后 ( < 10 d) 相关系数;自由度n>200,0.1, 0.05, 0.01, 0.001的显著性水平相关系数阈值分别为0.12, 0.14, 0.18和0.23。
    DownLoad: Download CSV
  • [1]
    陈正洪, 洪斌.华中电网四省日用电量与气温关系的评估.地理学报, 2000, 55(增刊):34-38. http://www.cnki.com.cn/Article/CJFDTOTAL-DLXB2000S1006.htm
    [2]
    周自江.我国冬季气温变化与采暖分析.应用气象学报, 2000, 11(2): 251-252. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20000237&flag=1
    [3]
    张立祥, 陈力强, 王明华.城市供电量与气象条件的关系.气象, 2000, 26(7):27-31. doi:  10.7519/j.issn.1000-0526.2000.07.007
    [4]
    张海东, 孙照渤, 郑艳, 等.温度变化对南京城市电力负荷的影响.大气科学学报, 2009, 32(4): 536-542. http://www.cnki.com.cn/Article/CJFDTOTAL-NJQX200904011.htm
    [5]
    陈峪, 叶殿秀.温度变化对夏季降温能耗的影响.应用气象学报, 2005, 16(增刊): 97-104. http://kns.cnki.net/kns/detail/detail.aspx?QueryID=6&CurRec=1&recid=&FileName=YYQX2005S1012&DbName=CJFD2005&DbCode=CJFQ&yx=&pr=
    [6]
    张小玲, 王迎春.北京夏季用电量与气象条件的关系及预报.气象, 2002, 28(2): 17-21. doi:  10.7519/j.issn.1000-0526.2002.02.004
    [7]
    罗慧, 巢清尘, 李奇, 等.气象要素在电力负荷预测中的应用.气象, 2005, 31(6): 15-18. doi:  10.7519/j.issn.1000-0526.2005.06.003
    [8]
    Douglas M, Le Comte, Henry E W. Modeling the impact of summer temperatures on national electricity consumption. J Appl Meteorol, 1981, 20(2): 1415-1419. doi:  10.1175/1520-0450%281981%29020<1415%3AMTIOST>2.0.CO%3B2
    [9]
    张家诚, 高素华, 潘亚茹.我国温度变化与冬季采暖气候条件的探讨.应用气象学报, 1992, 3(1): 70-75. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=19920114&flag=1
    [10]
    蔡新玲, 徐虹, 乔秋文.陕西电网用电量与气象因子的关系.西北水力发电, 2003, 19(4): 40-43. http://www.cnki.com.cn/Article/CJFDTOTAL-SXFD200304012.htm
    [11]
    段海来, 千怀遂.广州市城市电力消费对气候变化的响应.应用气象学报, 2009, 20(1): 80-87. doi:  10.11898/1001-7313.20090110
    [12]
    陈莉, 李帅, 方修琦, 等.北京市1996—2007年住宅空调致冷耗能影响因素分析.气候变化研究进展, 2009, 5(4): 231-236. http://www.cnki.com.cn/Article/CJFDTOTAL-QHBH200904013.htm
    [13]
    吴向阳, 张海东.北京市气温对电力负荷影响的计量经济分析.应用气象学报, 2008, 18(5): 531-538. doi:  10.11898/1001-7313.20080503
    [14]
    吴兑, 邓雪娇.环境气象学与特种气象预报.北京:气象出版社, 2001: 170-171.
    [15]
    王远飞, 沈愈.上海市夏季温湿效应与人体舒适度.华东师范大学学报 (自然科学版), 1998(3): 60-66. http://www.cnki.com.cn/Article/CJFDTOTAL-HDSZ199803009.htm
  • 加载中
  • -->

Catalog

    Figures(3)  / Tables(1)

    Article views (3446) PDF downloads(3101) Cited by()
    • Received : 2010-12-17
    • Accepted : 2011-06-17
    • Published : 2011-12-31

    /

    DownLoad:  Full-Size Img  PowerPoint