Feng Jianshe, Wang Jianyuan, Wang Xintang, et al. The application of relative humidity index to agricultural drought monitoring. J Appl Meteor Sci, 2011, 22(6): 766-772.
Citation: Feng Jianshe, Wang Jianyuan, Wang Xintang, et al. The application of relative humidity index to agricultural drought monitoring. J Appl Meteor Sci, 2011, 22(6): 766-772.

The Application of Relative Humidity Index to Agricultural Drought Monitoring

  • Received Date: 2011-04-02
  • Rev Recd Date: 2011-08-08
  • Publish Date: 2011-12-31
  • Relative humidity index and corresponding methods are introduced to deal with daily agricultural drought monitoring. The method recommended by FAO is used to calculate the potential evapotranspiration and rectify the crop coefficient.When rectifying the crop coefficient under soil water stress condition, the absorbable total available soil water in the root zone is used to replace the total available soil water in the root zone. Because the latter causes higher results, which means water stress seldom occurs. Actually, most of the roots are located in shallow layer, only a small part of major roots extends to deep layer. For example, the roots of winter wheat can be 1.0 m deep before winter, but 80%—85% of the roots are in the soil shallower than 0.4 m. Therefore, if water stress occurs in the upper soil, the winter wheat's growing will be limited despite enough water in the deeper soil, because 15%—20% of the roots in deeper soil can't absorb enough water for transpiration. So it's necessary to consider the water absorbing capacity of the crop root, that's why the absorbable total available soil water in the root zone is used.When calculating the relative humidity index, steady rule can't be reflected reasonably in any individual period, because the former field water balance affects the current soil water condition. By summing up the weighted relative humidity index during different period of time, the combined relative humidity index is evolved, and it can well reflect the cumulative affection of former field water balance.The relative humidity index of single crop reflects the soil water condition on one kind of crop, regional combined relative humidity index is evolved by summing up the combined relative humidity index of single crop weighted on its planting area. With this method, agricultural drought monitoring can step over single crop growing season, so and agricultural drought can be monitored throughout the whole year.There are 114 stations for soil moisture manual observation in Shandong Province. From 28 Feb 2008 to 8 Dec 2008, manual observation is carried out every ten days, and 3048 groups of data are available. The comparison shows that for 2012 groups of data, drought degree calculated from relative humidity index is coincident with observation, reaching 66%. The accuracy is lower than 50% in most of west-north area of Shandong, the irrigation district of the Yellow River, the Dongping Lake, and the Weishan Lake. On the other hand, the accuracy is mostly greater than 70% in east-central of Shandong and some other districts. Among the whole period, the degree of coincident is lower in spring than that in summer.
  • Fig. 1  Coincidence rate between manual observation and regional combined relative humidity index of Shandong in 2008

    Fig. 2  Drought degree comparison between manual observation and regional combined relative humidity index at Rongcheng, Linqing, Heze and Pingdu stations of Shandong in 2008

    Table  1  Comparison between rectifying winter wheat coefficient under soil water stress condition using Vtaw and Vataw at Jinan Station from 8 Jan to 28 May in 2008

    日期 E0/mm Ks0 Ks1 Ea0/mm Ea1/mm
    01-08 2.306 1 1 1.530 1.530
    01-18 0.235 1 1 0.172 0.172
    01-28 0.584 1 1 0.429 0.429
    02-08 0.895 1 1 0.630 0.630
    02-18 1.918 1 1 1.221 1.221
    02-28 4.496 1 0.999 3.083 3.080
    03-08 4.093 1 0.614 2.375 1.585
    03-18 5.367 1 0.399 3.471 1.858
    03-28 3.093 1 0.407 1.929 1.012
    04-08 8.752 0.716 0.156 3.899 1.193
    04-18 4.072 1 0.389 3.850 1.825
    04-28 8.284 1 1 10.668 10.668
    05-08 2.004 1 0.863 2.306 2.004
    05-18 1.969 1 1 2.299 2.299
    05-28 12.537 0.498 0.088 9.100 4.133
    DownLoad: Download CSV
  • [1]
    邹旭恺, 张强, 王有民, 等.干旱指标研究进展及中美两国国家级干旱监测.气象, 2005, 31(7):6-9. doi:  10.7519/j.issn.1000-0526.2005.07.002
    [2]
    卫捷, 马柱国.Palmer干旱指数、地表湿润指数与降水距平的比较.地理学报, 2003, 58(增刊):117-124. http://www.cnki.com.cn/Article/CJFDTOTAL-DLXB2003S1013.htm
    [3]
    刘巍巍, 安顺清, 刘庚山, 等.帕默尔旱度模式的进一步修正.应用气象学报, 2004, 15(2):207-215. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20040226&flag=1
    [4]
    郭安红, 刘巍巍, 安顺清, 等.基于改进失水模式和增加建模站点的Palmer旱度模式.应用气象学报, 2008, 19(4): 502-506. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20080415&flag=1
    [5]
    王劲松, 黄玉霞, 冯建英, 等.径流量Z指数与Palmer指数对河西干旱的监测.应用气象学报, 2009, 20(4):471-477. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=200904012&flag=1
    [6]
    王越, 江志红, 张强, 等.用Palmer湿润指数作西北地区东部冬小麦旱涝评估.应用气象学报, 2008, 19(3):342-349. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20080356&flag=1
    [7]
    申双和, 张方敏, 盛琼.1975—2004年中国湿润指数时空变化特征.农业工程学报, 2009, 25(1):11-15. http://www.cnki.com.cn/Article/CJFDTOTAL-NYGU200901006.htm
    [8]
    黄斌, 韩涛, 郭江勇.陇东地表湿润指数的年际变化特征.干旱地区农业研究, 2008, 26(4):250-259. http://www.cnki.com.cn/Article/CJFDTOTAL-GHDQ200804045.htm
    [9]
    马柱国, 符淙斌.中国北方干旱区地表湿润状况的趋势分析.气象学报, 2001, 59(6):737-746. doi:  10.11676/qxxb2001.077
    [10]
    杜军, 边多, 胡军, 等.藏北牧区地表湿润状况对气候变化的响应.生态学报, 2009, 29(5):2437-2444. http://www.cnki.com.cn/Article/CJFDTOTAL-STXB200905032.htm
    [11]
    马淑红, 李振山, 刘涛, 等.新疆公路沿线近50多年来湿润指数区域特征及变化趋势.干旱区地理, 2009, 32(5):746-753. http://www.cnki.com.cn/Article/CJFDTOTAL-GHDL200905022.htm
    [12]
    郭晶, 吴举开, 李远辉, 等.广东省气候干湿状况及其变化特征.中国农业气象, 2008, 29(2):157-161. http://cpfd.cnki.com.cn/Article/CPFDTOTAL-ZGQX200711010093.htm
    [13]
    马晓群, 吴文玉, 张辉.利用累积湿润指数分析江淮地区农业旱涝时空变化.资源科学, 2008, 30(3):371-377. http://www.cnki.com.cn/Article/CJFDTOTAL-ZRZY200803008.htm
    [14]
    江和文, 迟春艳, 陈红磊.盘锦作物生长季气象干旱特征分析.安徽农业科学, 2010, 38(1):231-233. http://www.cnki.com.cn/Article/CJFDTOTAL-AHNY201001093.htm
    [15]
    石大明, 刘实, 张丽, 等.吉林省"干旱逐日滚动监测系统"的研制.吉林气象, 2007(4):1-35. http://www.cnki.com.cn/Article/CJFDTOTAL-JLQX200704004.htm
    [16]
    马晓群, 刘惠敏, 吴文玉.安徽省农业干旱综合监测技术及其业务试用.气象, 2008, 34(5):75-81. doi:  10.7519/j.issn.1000-0526.2008.05.012
    [17]
    杨利峰, 谢五三.安徽省旱涝监测业务系统建设及旱涝灾害指标的检验.安徽农业科学, 2009, 37(8):3848-3850. http://www.cnki.com.cn/Article/CJFDTOTAL-AHNY200908192.htm
    [18]
    方锋, 梁东升, 张存杰.西北干旱监测预警评估业务系统开发与应用.水土保持通报, 2010, 30(3):140-143. http://www.cnki.com.cn/Article/CJFDTOTAL-STTB201003030.htm
    [19]
    马晓群, 吴文玉, 张辉.农业旱涝指标及在江淮地区监测预警中的应用.应用气象学报, 2009, 20(2):186-194. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20090208&flag=1
    [20]
    Allen R G, Pereira L S, Raes D, et al. Crop Evapotranspiration-Guidelines for Computing Crop Water Requirements-FAO Irrigation and Drainage Paper 56(EB/OL).1998.http://www.fao.org/docrep/x0490e/x0490e00.htm.
    [21]
    美国农业部土壤保持局. 美国国家灌溉工程手册. 水利部国际合作司, 译. 北京: 中国水利水电出版社, 1998: 91-134.
    [22]
    余松烈.山东小麦.北京:农业出版社, 1990:62-70.
    [23]
    王忠孝.山东玉米.北京:中国农业出版社, 1999:72-77.
    [24]
    李文炳.山东棉花.上海:上海科学技术出版社, 2001:51-77.
  • 加载中
  • -->

Catalog

    Figures(2)  / Tables(1)

    Article views (4038) PDF downloads(2534) Cited by()
    • Received : 2011-04-02
    • Accepted : 2011-08-08
    • Published : 2011-12-31

    /

    DownLoad:  Full-Size Img  PowerPoint