Wind profile radar uses coherent accumulation technology to improve sounding sensitivity, which can obtain high resolution spectral data and entire spectrum information of return signal compared to the Doppler weather radar, so it is applied in precipitation, cloud body structure detection and research aspects widely. The concrete implementing schemes of noise signal processing and spectrum parameters extraction leads to the differences in ability of extraction the useful signal from atmosphere return signal and estimation accuracy, so the method of signal processing and information extraction is the key technologies of signal process.The simulation of radar return signal is an important method to evaluate ability of extracted information. Based on the clear sky atmospheric detection data of different types of wind profile radars which are placed at Yanqing of Beijing and Dongguan of Guangdong, both the power spectral density distribution of atmospheric return signals and the statistical characteristics of radar system noise amplitude are analyzed. The distribution of atmospheric return signal is Gaussian distribution. Radar system noise is white noise, the noise amplitude statistical characteristics presents Gaussian distribution. Based on this, radar output signal is simulated by Gaussian random function generating method. Comparison is conducted between the detected and simulated signal spectrum parameters 1000 times, showing good accordance, the average relative error of the average signal power for CFL-08 wind profile radar is 2%, the error of average Doppler velocity is 3%, the average relative error of spectral width is 1%; the average relative error of the average signal power is 3% for CFL-03 wind profile radar, the error of average Doppler velocity of which is 2%, and the average relative error of spectral width of which is 2%. Furthermore, preliminary test and analysis for wind profile radar information processing method and its processing precision are carried out by using the simulation data.
Petitdidier M, Amadou S, Garrouste A, et al. Statistical characteristics of the noise power spectral density in UHF and VHF wind profilers. Radio Sci, 1997, 32: 1229-1247. doi: 10.1029/97RS00250