Wang Sha, Ruan Zheng, Ge Runsheng. Simulation of return signal spectrum of wind profile radar. J Appl Meteor Sci, 2012, 23(1): 20-29.
Citation: Wang Sha, Ruan Zheng, Ge Runsheng. Simulation of return signal spectrum of wind profile radar. J Appl Meteor Sci, 2012, 23(1): 20-29.

Simulation of Return Signal Spectrum of Wind Profile Radar

  • Received Date: 2011-03-07
  • Rev Recd Date: 2011-11-16
  • Publish Date: 2012-02-29
  • Wind profile radar uses coherent accumulation technology to improve sounding sensitivity, which can obtain high resolution spectral data and entire spectrum information of return signal compared to the Doppler weather radar, so it is applied in precipitation, cloud body structure detection and research aspects widely. The concrete implementing schemes of noise signal processing and spectrum parameters extraction leads to the differences in ability of extraction the useful signal from atmosphere return signal and estimation accuracy, so the method of signal processing and information extraction is the key technologies of signal process.The simulation of radar return signal is an important method to evaluate ability of extracted information. Based on the clear sky atmospheric detection data of different types of wind profile radars which are placed at Yanqing of Beijing and Dongguan of Guangdong, both the power spectral density distribution of atmospheric return signals and the statistical characteristics of radar system noise amplitude are analyzed. The distribution of atmospheric return signal is Gaussian distribution. Radar system noise is white noise, the noise amplitude statistical characteristics presents Gaussian distribution. Based on this, radar output signal is simulated by Gaussian random function generating method. Comparison is conducted between the detected and simulated signal spectrum parameters 1000 times, showing good accordance, the average relative error of the average signal power for CFL-08 wind profile radar is 2%, the error of average Doppler velocity is 3%, the average relative error of spectral width is 1%; the average relative error of the average signal power is 3% for CFL-03 wind profile radar, the error of average Doppler velocity of which is 2%, and the average relative error of spectral width of which is 2%. Furthermore, preliminary test and analysis for wind profile radar information processing method and its processing precision are carried out by using the simulation data.
  • Fig. 1  Atmospheric return signal power spectral density distribution and spectrum parameters

    Fig. 2  Noise characteristics of five range bins of CFL-08(a) and CFL-03(b) wind profile radars

    Fig. 3  Noise simulation and spectrum amplitude distribution

    (a) simulation of noise of CFL-08 wind profile radar, (b) spectrum amplitude distribution

    Fig. 4  Noise simulation and spectrum amplitude distribution of CFL-03 wind profile radar

    (a) simulation of noise of CFL-03 wind profile radar, (b) spectrum amplitude distribution

    Fig. 5  Simulation of return signal of the clear air

    (a) the power spectrum of observation, (b) the power spectrum of simulation

    Fig. 6  Flow chart of wind profile radar atmospheric return simulation signal

    Fig. 7  Relations between estimation relative error of noise level and numbers of spectral lines

    Fig. 8  Estimation relative error of spectral width with different SNR

    Fig. 9  Relative error of spectral width with different SNR calculated by the method of half-power point

    Table  1  System parameters of wind profile radar

    参数 对流层Ⅱ型 (CFL-08)
    风廓线雷达
    边界层 (CFL-03)
    风廓线雷达
    波长/mm 674 227
    探测模式
    脉冲宽度/μs 0.8 4 1 3
    噪声系数/dB 2 2 1.8 1.8
    谱变换数 256 512 256 512
    谱平均数 6 12 6 6
    相干积分次数 200 50 100 60
    距离库长/m 120 240 50 100
    Nyquist速度/(m·s-1) ±16.7 ±33.3 ±7.8 ±15.7
    最小速度间隔/(m·s-1) 0.13 0.13 0.06 0.06
    DownLoad: Download CSV
  • [1]
    何平.相控阵风廓线雷达.北京:气象出版社, 2006:3-24.
    [2]
    何平, 朱小燕, 阮征, 等.风廓线雷达探测降水过程的初步研究.应用气象学报, 2009, 20(4):445-470. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=200904011&flag=1
    [3]
    阮征, 葛润生, 吴志根.风廓线仪探测降水云体结构方法的研究.应用气象学报, 2002, 13(5):170-179. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20020343&flag=1
    [4]
    阮征, 何平, 葛润生.风廓线雷达对大气折射率结构常数的探测研究.大气科学, 2008, 32(1): 133-140. http://www.cnki.com.cn/Article/CJFDTOTAL-DQXK200801012.htm
    [5]
    刘淑媛, 郑永光, 陶祖钰.利用风廓线雷达资料分析低空急流的脉动与暴雨关系.热带气象学报, 2003, 19(3):63-68. http://cpfd.cnki.com.cn/Article/CPFDTOTAL-BJQX200811001013.htm
    [6]
    王令, 郑国光, 康玉霞, 等.多普勒天气雷达径向速度图上的雹云特征.应用气象学报, 2006, 17(3):281-286. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20060349&flag=1
    [7]
    李华宏, 薛纪善, 王曼, 等.多普勒雷达风廓线的反演及变分同化试验.应用气象学报, 2007, 18(1):50-57. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20070110&flag=1
    [8]
    罗倩, 闫鸿慧.相关地杂波建模和仿真.舰船电子工程, 2008, 172(10):129-131. doi:  10.3969/j.issn.1627-9730.2008.10.037
    [9]
    刘瑞平, 沈福民.雨杂波的特性及仿真.火控雷达技术, 2005, 34(1):43-46. http://www.cnki.com.cn/Article/CJFDTOTAL-HKLD200501010.htm
    [10]
    单娜, 冀振元.舰载超视距海杂波仿真.现代雷达, 2003, 9(9):16-18. http://www.cnki.com.cn/Article/CJFDTOTAL-XDLD200309005.htm
    [11]
    卢建奇, 赵拥军.基于ZMNL的雷达杂波仿真研究.电子对抗, 2006(2):31-35. http://www.cnki.com.cn/Article/CJFDTOTAL-XDFJ200901038.htm
    [12]
    邹小海, 韩宏伟, 华祖耀.雷达模拟器中地物杂波信号仿真的方法研究.计算机仿真, 2007, 24(6):280-283. http://www.cnki.com.cn/Article/CJFDTOTAL-JSJZ200706077.htm
    [13]
    高志球, 肖艳姣, 袁立功, 等.天气多普勒雷达回波信号处理的模拟实验.遥感技术与应用, 1998, 12(4):43-49. doi:  10.11873/j.issn.1004-0323.1998.4.43
    [14]
    钟刘军, 阮征, 葛润生, 等.风廓线雷达回波信号强度定标方法.应用气象学报, 2010, 21(5):598-605. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20100509&flag=1
    [15]
    Strauch R G, Merritt D A, Moran K P, et al. The colorado wind-profiling network. J Atmos Ocean Technol, 1984, 3(1):37-49. doi:  10.1175/1520-0426(1984)001<0037%3ATCWPN>2.0.CO%3B2
    [16]
    马建立. 风廓线雷达谱参数提取方法的研究. 成都: 成都信息工程学院, 2008.
    [17]
    樊昌信, 曹立娜.通信原理.南京:国防工业出版社, 2006.
    [18]
    Hildebrand P H, Sekhon R S. Objective determination of the noise level in Doppler spectra. J Appl Meteor, 1974, 10:808-811. doi:  10.1175/1520-0450(1974)013<0808%3AODOTNL>2.0.CO%3B2
    [19]
    Petitdidier M, Amadou S, Garrouste A, et al. Statistical characteristics of the noise power spectral density in UHF and VHF wind profilers. Radio Sci, 1997, 32: 1229-1247. doi:  10.1029/97RS00250
    [20]
    石辅天, 唐青松, 李友国.概率论与数理统计.沈阳:东北大学出版社, 2009:50-51.
    [21]
    戴颖, 计奎.生成正态分布随机数的一种新方法——基于Windows时间函数.地矿测绘, 2004, 20(2):7-8. http://www.cnki.com.cn/Article/CJFDTOTAL-DKCH200402003.htm
  • 加载中
  • -->

Catalog

    Figures(9)  / Tables(1)

    Article views (4734) PDF downloads(2735) Cited by()
    • Received : 2011-03-07
    • Accepted : 2011-11-16
    • Published : 2012-02-29

    /

    DownLoad:  Full-Size Img  PowerPoint