Dong Gaohong, Liu Liping. Correlation analysis on estimating rainfall using radar-rain gauge calibration. J Appl Meteor Sci, 2012, 23(1): 30-39.
Citation: Dong Gaohong, Liu Liping. Correlation analysis on estimating rainfall using radar-rain gauge calibration. J Appl Meteor Sci, 2012, 23(1): 30-39.

Correlation Analysis on Estimating Rainfall Using Radar-rain Gauge Calibration

  • Received Date: 2011-05-16
  • Rev Recd Date: 2011-10-18
  • Publish Date: 2012-02-29
  • In order to give full play to the advantages of radar-gauge calibration algorithms, the correlation of radar data and rain gauge data is studied before and after quality control by analyzing the quality of radar data and rain gauge data. Based on 11 major precipitation processes during 2008—2009, impacts of 14 types of rain gauge densities on radar rainfall estimation are analyzed by using three radar-gauge calibration algorithms, which are variational calibration method, optimal interpolation method and Kalman filter method. The results show that the quality of rain gauge precipitation data of Tianjin is reliable, only 0.5% of the rain gauge precipitation data has larger error, and equipment failure or external factors is the main cause of its larger error. A reflectivity quality control (QC) procedure has been developed by Chinese Academy of Meteorological Sciences for identifying and removing non-precipitation echoes (such as ground clutter or anomalously propagated ground returns) from the radar base reflectivity fields, and quality control of radar data is implemented using the QC procedure. These non-meteorological echoes can be effectively removed, while retaining precipitation echoes, and thus the rainfall overestimation phenomenon of radar can be significantly improved. The correlation of radar reflectivity data and rain gauge data is analyzed before and after controlling their qualities by selecting different types of precipitation process, results show that quality control of the radar and rain gauge data is necessary to significantly increase the correlation between them and to improve the capacity of radar rainfall estimation. Using some radar-gauge calibration algorithms, impacts of different rain gauge densities on radar rainfall estimation are analyzed. The conclusion is that the capacity of radar rainfall estimation on rain gauge calibration can be improved significantly. The precision of radar rainfall estimation is continuously improved and then become stable with the density of rain gauge increased. The impacts of radar rainfall estimation and the calibration gauge density are related to the types of rainfall. To achieve equal calibration results, convective precipitation caused by cumulus needs the rain gauge density of about a gauge per 182 km2, mixed cloud precipitation needs about a gauge per 211 km2, and for stratiform precipitation a gauge per 405 km2 is enough. The impacts of different radar-gauge calibration algorithms are different. It shows that Kalman filter method is suitable for the calibration of stratiform precipitation or for the low rain gauge density area, and variational method and optimal interpolation method are suitable for the calibration of convective precipitation or for the high rain gauge density area.
  • Fig. 1  Distributions of Tianjin weather stations and rain gauges (the interval between adjacent circles is 50 km)(a) with Tianjin urban rain gauges (b)

    Fig. 2  0.5° elevation angle Tianjin radar PPI at 0737 UTC 30 July 2005

    (a) before quality control, (b) after quality control

    Fig. 3  Scatterplot of radar rainfall estimation and rain gauge rainfall

    Fig. 4  Rain gauge site density distribution schematic for calibrated radar (the interval between adjacent circles is 50 km)

    Fig. 5  Performance measures for rain gauge calibration density on 27 June 2008, 14 July 2008 and 19 April 2009

    ( > 50 km denotes only one rain gauge calibration)

    Fig. 6  The effects of variational calibration method

    Table  1  Different density of rain gauge calibration program distribtution

    站点距离/km 密度/(10-3·km-2) 个数
    8 15.6 183
    9 12.3 145
    10 9.9 117
    11 8.2 97
    12 6.9 81
    13 6.0 70
    14 5.1 60
    15 4.4 52
    18 3.1 36
    20 2.5 29
    23 1.9 22
    25 1.5 18
    30 1.1 13
    >50 0.09 1
    DownLoad: Download CSV
  • [1]
    张培昌, 杜秉玉, 戴铁丕.雷达气象学.北京:气象出版社, 2001.
    [2]
    Collier C G. Applications of Weather Radar Systems: A Guide to Uses of Radar Data in Meteorology and Hydrology. Chichester: Ellis Horwood Limited, 1989: 33-34.
    [3]
    Joss J, Wessels H. Ground Clutter Suppression for Weather Radar Data. Tech Rep COST Tech, Rep 73/WD/130, Note 1297, 1990.
    [4]
    Keeler R J, Passarelli R E. Signal Processing for Atmospheric Radars//Radar in Meteorology. Amer Meteor Soc, 1990: 199-230.
    [5]
    Pratte J F, Keeler R J, Gagnon R, ed al. Clutter Processing During Anomalous Propagation Conditions//Preprints, 27th Conf on Radar Meteorology. Amer Meteor Soc, 1995: 139-141.
    [6]
    Smith P L.Precipitation Measurement and Hydrology: Panel Report//Radar in Meteorology. Amer Meteor Soc, 1990: 607-618.
    [7]
    Collier C G, Lovejoy S, Austin G L. Analysis of bright bands from 3D radar data//Preprints, 19th Conf on Radar Meteorology. Amer Meteor Soc, 1980: 44-47.
    [8]
    Kessinger C, Ellis S, Van Andel J. NEXRAD Data Quality Enhancements: The AP Clutter mitigation Scheme//Preprints, 30th International Conference on Radar Meteorology, Amer Meteor Soc, 2001: 707-709.
    [9]
    刘黎平, 吴林林, 杨引明.基于模糊逻辑的分布式超折射地物回波识别方法的建立和效果分析.气象学报, 2007, 65(2):253-260. http://www.cnki.com.cn/Article/CJFDTOTAL-QXXB200702010.htm
    [10]
    刘黎平, 王致君.双线偏振雷达探测的云和地物回波的特征及其识别方法.高原气象, 1996, 15(3): 303-310. http://www.cnki.com.cn/Article/CJFDTOTAL-GYQX603.005.htm
    [11]
    Daley R. Atmospheric Data Analysis//Cambridge Atmospheric and Space Science Series. Cambridge: Cambridge University Press, 1991.
    [12]
    Seo D J. Real-time estimation of rainfall fields using radar rainfall and rain gage data. J Hydro, 1998, 208: 37-52. doi:  10.1016/S0022-1694(98)00141-3
    [13]
    Dinku T, Anagnostou E, Borga M. Improving radarbased estimation of rainfall over complex terrain. J Appl Meteor, 2002, 41: 1163-1178. doi:  10.1175/1520-0450(2002)041<1163:IRBEOR>2.0.CO;2
    [14]
    Ninomiya K, Akeyama T. Objective analysis of heavy rainfalls based on radar and gauge measurement. J Meteor Soc Japan, 1978, 50: 206-210. http://ci.nii.ac.jp/naid/40000633612
    [15]
    尹忠海, 张沛源.利用卡尔曼滤波校准方法估算区域降水量.应用气象学报, 2005, 16(2): 213-219. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20050226&flag=1
    [16]
    邓雪娇, 黄浩辉, 吴兑.变分法在校准雷达定量估测降水中的应用.应用气象学报, 2000, 11(2):255-256. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20000239&flag=1
    [17]
    Rosenfeld D, Wolff D B, Amitai E. The windows probability matching method for rainfall measurements with radar. J Appl Meteor, 1994, 33: 682-693. doi:  10.1175/1520-0450(1994)033<0682:TWPMMF>2.0.CO;2
    [18]
    史锐, 程明虎, 崔哲虎, 等.用反射率因子垂直廓线联合雨量计校准估测夏季区域强降水.应用气象学报, 2005, 16(6):737-744. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20050696&flag=1
    [19]
    万玉发, 张家国, 杨洪平, 等.联合雷达网和卫星定量测量与预报长江流域大范围降水.应用气象学报, 1998, 9(1):94-103. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=19980113&flag=1
    [20]
    Wilson J W. Integration of radar and rain gage data for improved rainfall measurement. J Appl Meteor, 1970, 9: 489-498. doi:  10.1175/1520-0450(1970)009<0489:IORARD>2.0.CO;2
    [21]
    Brandes E. Optimizing rainfall estimates with the aid of radar. J Appl Meteor, 1975, 14(7): 1339-1345. doi:  10.1175/1520-0450(1975)014<1339:OREWTA>2.0.CO;2
    [22]
    Harrold T W, English E J, Nicholass C A. The accuracy of radar-derived rainfall measurements in hilly terrain. Quart J Roy Met Soc, 1974, 100: 331-350. doi:  10.1002/(ISSN)1477-870X
    [23]
    Collier C G, Harrold T W, Nicholass C A. A Comparison of a Real Rainfall as Measured by a Rain Gauge Calibrated Radar System and Rain Gauge Networks of Various Densities//Preprints, 16th Radar Met Conf. Amer Meteor Soc, 1975: 467-472.
    [24]
    Woodley W L, Olsen A R, Herndon A, et al. Comparison of gages and radar methods of convective rain measurement. J Appl Meteor, 1975, 14: 909-928. doi:  10.1175/1520-0450(1975)014<0909:COGARM>2.0.CO;2
    [25]
    Young C B, Bradley A A, Krajewski W F, et al. Evaluating NEXRAD multisensor precipitation estimates for operational hydrologic forecasting. J Hydro, 2000, 1: 241-254. doi:  10.1175/1525-7541(2000)001<0241:ENMPEF>2.0.CO;2
    [26]
    刘晓阳, 毛节泰, 李纪人, 等.雷达估测降水模拟史灌河流域径流.北京大学学报:自然科学版, 2002, 38(3):342-349. http://www.cnki.com.cn/Article/CJFDTOTAL-BJDZ200203011.htm
    [27]
    张亚萍, 程明虎, 徐慧, 等.雷达定量测量降水在佛子岭流域径流模拟中的应用.应用气象学报, 2007, 18(3):295-305. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20070351&flag=1
    [28]
    Joss J, Gori E G. Shapes of raindrop size distributions. J Appl Meteor, 1978, 17: 1054-1061. doi:  10.1175/1520-0450(1978)017<1054:SORSD>2.0.CO;2
    [29]
    李建通, 杨维生, 郭林, 等.提高最优插值法测量区域降水量精度的探讨.大气科学, 2000, 24(2): 263-270. http://www.cnki.com.cn/Article/CJFDTOTAL-DQXK200002013.htm
  • 加载中
  • -->

Catalog

    Figures(6)  / Tables(1)

    Article views (5203) PDF downloads(2078) Cited by()
    • Received : 2011-05-16
    • Accepted : 2011-10-18
    • Published : 2012-02-29

    /

    DownLoad:  Full-Size Img  PowerPoint