Peng Yanqiu, Wang Weiguo, Liu Yu, et al. Total column water vapor over chinese mainland based on different datasets. J Appl Meteor Sci, 2012, 23(1): 59-68.
Citation: Peng Yanqiu, Wang Weiguo, Liu Yu, et al. Total column water vapor over chinese mainland based on different datasets. J Appl Meteor Sci, 2012, 23(1): 59-68.

Total Column Water Vapor over Chinese Mainland Based on Different Datasets

  • Received Date: 2011-05-28
  • Rev Recd Date: 2011-10-09
  • Publish Date: 2012-02-29
  • The spatial distribution characteristics and linear trends of total column water vapor (TCWV) are compared between radiosonde data, NCEP/NCAR reanalysis data and ERA-40 reanalysis data over Chinese Mainland from 1971 to 2001. The TCWV is also used to investigate how water vapor changes under the context of climate change. The radiosonde data are used to calculate TCWV, which is integrated vertically from surface to 300 hPa, TCWV of NCEP/NCAR and ERA-40 reanalysis data also restricts from surface to 300 hPa. Considering the missing rate and integrity, 78 stations are selected and the analyzed. The result shows that the climatological annual mean and seasonal mean spatial distribution features of TCWV between those data are consistent. TCWV decreases gradually from southeast to northwest, but the decreasing rate derived from the two reanalysis data are smaller than that of radiosonde data. Seasonal variations of TCWV is distinct, the largest TCWV occurs in summer and the smallest in winter. For linear trend of annual mean, TCWV is increasing in northeast of China, the coastal regions of Southern China, northern regions of Southwest China and northern Xinjiang region in all three data. The most evident differences in three data are in southern Xinjiang region and parts of north and east China. In southern Xinjiang region, TCWV of NCEP/NCAR reanalysis data shows decreasing trend, it is increasing according to the other two datasets. In parts of north and east China, TCWV of the two reanalysis datasets both show decreasing trend, but according to the radiosonde data, TCWV may increase slightly rather than decrease. The linear trend of TCWV by all three datasets is not significant at 95% confidence level in this region. Radiosonde data also shows that the largest relative trends are in higher latitudes. Six stations are selected to compare time series of anomaly TCWV between the three datasets, indicating that anomaly TCWV of three datasets have similar variation tendency at the same station, though not equal. The variation tendency of TCWV is different from station to station, which illustrates water vapor responds differently to climate change in different regions.
  • Fig. 1  The location of observational stations selected in this study

    Fig. 2  Climatological annual mean vertically-integrated total column water vapor distribution over Chinese Mainland

    Fig. 3  Mean seasonal total column water vapor distributions in summer and winter over Chinese Mainland

    Fig. 4  The linear trend of yearly total column water vapor over Chinese Mainland from 1971 to 2001(unit: mm/10 a)

    (the shaded area denotes passing the test of 95% level)

    Fig. 5  The percentage rate of yearly total column water vapor over Chinese Mainland from 1971 to 2001(unit:%/10 a)

    Fig. 6  The linear trend of seasonal total column water vapor over Chinese Mainland (unit: mm/10 a)

    (the shaded area denotes passing the test of 95% level)

    Fig. 7  Anomalous curves of yearly total column water vapor in 6 selected stations during 1971—2001 over Chinese Mainland

  • [1]
    Trenberth K E, Smith L, Qian T, et al. Estimates of the global water budget and its annual cycle using observational and model data. J Hydrometeor, 2007, 8: 758-769. doi:  10.1175/JHM600.1
    [2]
    Soden B, Held I M. An assessment of climate feedbacks in coupled atmosphere-ocean models. J Clim, 2006, 19: 3354-3360. doi:  10.1175/JCLI3799.1
    [3]
    Mears C A, Santer B D, Wentz F J, et al. Relationship between temperature and precipitable water changes over tropical oceans. Geophys Res Lett, 2007, 34, L24709, doi: 10.1029/2007GL031936.
    [4]
    Trenberth K E, Dai A, Rasmussen R M, et al. The changing character of precipitation. Bull Amer Meteor Soc, 2003, 84: 1205-1217. doi:  10.1175/BAMS-84-9-1205
    [5]
    Wentz F J, Ricciardulli L, Hilburn K, et al. How much more rain will global warming bring? Science, 2007, 317: 233-235. doi:  10.1126/science.1140746
    [6]
    Houghton J T, Meira Filho L G, Callander B A, et al. Climate Change 1995//The IPCC Scientific Assessment. Cambridge: Cambridge University Press, 1996.
    [7]
    Houghton J T, Ding Y, Griggs D J, et al. Climate Change 2001: The Scientific Basis. Cambridge: Cambridge University Press, 2001.
    [8]
    Ross R J, Elliott W P. Radiosonde-based Northern Hemisphere tropospheric water vapor trends. J Clim, 2001, 14: 1602-1611. doi:  10.1175/1520-0442(2001)014<1602:RBNHTW>2.0.CO;2
    [9]
    Durre I, Williams Jr C N, Yin X, et al. Radiosonde-based trends in precipitable water over the Northern Hemisphere: An update. J Geophys Res, 2009, 114, D05112, doi: 10.1029/2008JD010989.
    [10]
    Trenberth K E, Fasullo J, Smith L. Trends and variability incolumn-integrated atmospheric water vapor. Clim Dyn, 2005, 24: 741-758. doi:  10.1007/s00382-005-0017-4
    [11]
    徐淑英.我国的水汽输送和水分平衡.气象学报, 1958, 29(1):33-43. doi:  10.11676/qxxb1958.005
    [12]
    邹进上, 刘蕙兰.我国大陆上空平均水汽含量及其季节变化.气象科学, 1983(1):32-40. http://www.cnki.com.cn/Article/CJFDTOTAL-QXKX198301003.htm
    [13]
    邹进上, 刘惠兰.我国平均水汽含量分布的基本特点及其控制因子.地理学报, 1981, 36(4):377-391. http://www.cnki.com.cn/Article/CJFDTOTAL-DLXB198104003.htm
    [14]
    翟盘茂, 周琴芳.中国大气水分气候变化研究.应用气象学报, 1997, 8(3):342-351. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=19970348&flag=1
    [15]
    Zhai P M, Eskridge R E. Atmospheric water vapor over China. J Climate, 1997, 10: 2643-2652. doi:  10.1175/1520-0442(1997)010<2643:AWVOC>2.0.CO;2
    [16]
    戴莹, 杨修群.我国大陆上空可降水量的时空变化特征.气象科学, 2009, 29(2): 143-149. http://www.cnki.com.cn/Article/CJFDTOTAL-QXKX200902000.htm
    [17]
    陈娇娜, 李国平, 黄文诗, 等.华西秋雨天气过程中GPS遥感水汽总量演变特征.应用气象学报, 2009, 20(6):753-760. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20090614&flag=1
    [18]
    柳典, 刘晓阳.地基GPS遥感观测北京地区水汽变化特征.应用气象学报, 2009, 20(3):346-353. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20090311&flag=1
    [19]
    陈添宇, 李照荣, 陈乾, 等.用GMS5卫星反演水汽场分析中国西北地区大气水汽分布的气候特征.大气科学, 2005, 29(6): 864-871. http://www.cnki.com.cn/Article/CJFDTOTAL-DQXK200506002.htm
    [20]
    胡秀清, 黄意玢, 陆其峰, 等.利用FY-3A近红外资料反演水汽总量.应用气象学报, 2011, 22(1):46-56. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20110105&flag=1
    [21]
    赵天保, 符淙斌.应用探空观测资料评估几类再分析资料在中国区域的适用性.大气科学, 2009, 33 (3): 634-648. http://www.cnki.com.cn/Article/CJFDTOTAL-DQXK200903019.htm
    [22]
    徐影, 丁一汇, 赵宗慈.美国NCEP/NCAR近50年全球再分析资料在我国气候变化研究中可信度的初步分析.应用气象学报, 2001, 12(3):337-347. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20010345&flag=1
    [23]
    刘国纬.水文循环的大气过程.北京:科学出版社, 1997.
    [24]
    翟盘茂.中国历史探空资料中的一些过失误差及偏差问题.气象学报, 1997, 55(5): 564-572. http://www.cnki.com.cn/Article/CJFDTOTAL-QXXB705.004.htm
    [25]
    杨青, 魏文寿, 李军.塔克拉玛干沙漠及周边地区大气水汽量的时空变化.科学通报, 2008, 53(增刊Ⅱ): 62-68. http://www.cnki.com.cn/Article/CJFDTOTAL-KXTB2008S2008.htm
  • 加载中
  • -->

Catalog

    Figures(7)

    Article views (5549) PDF downloads(1233) Cited by()
    • Received : 2011-05-28
    • Accepted : 2011-10-09
    • Published : 2012-02-29

    /

    DownLoad:  Full-Size Img  PowerPoint