Zhang Xuefen, Xue Hongxi, Sun Han, et al. Function and designing of automatic observing system for agro-meteorology. J Appl Meteor Sci, 2012, 23(1): 105-112.
Citation: Zhang Xuefen, Xue Hongxi, Sun Han, et al. Function and designing of automatic observing system for agro-meteorology. J Appl Meteor Sci, 2012, 23(1): 105-112.

Function and Designing of Automatic Observing System for Agro-meteorology

  • Received Date: 2011-06-22
  • Rev Recd Date: 2011-10-12
  • Publish Date: 2012-02-29
  • Based on the proposed technique thought and designing principles, the hardware component parts and software function is designed for automatic observing system of agro-meteorology (named AOSA), which is visual and real time and can be controlled remotely according to the requirement of modern agro-meteorological operation. The AOSA is made of the automatic observing system of crop growing and meteorological observing as well as environment monitoring in the field. It includes temperature and humidity sensors for different heights, and solar radiation, photosynthetically active radiation, infrared temperature, rain, wind sensors above crop, and soil humidity and soil temperature sensors for different depths in soil. It can realize automatic observation of crop growing phases, crop height, crop cover, and main agro-meteorological disasters by means of crop meteorological observing and soil moisture data. There are many observing elements in agro-meteorology observation task, but the urgently needed elements and crop types in operational observation are solved in AOSA.The automatic observing techniques are introduced systematically. The technological specification of crop growing sensor is the foundation of AOSA research and development, which (resolutions of CCD sensors and installing height) have influences on accuracy of the crop automatic distinguishing. The results show that CCD sensor height and focus for short stalked plant is not below 3 m and 16 mm respectively and CCD sensor height and focus for tall stalked plant is not below 5 m and 21 mm respectively to observe an area of 5 m2 properly. The automatic distinguishing technique of crop development phases is realized by means of picture differentiating technique, considering crop growing and meteorological index. Crop observation is complicated, so different development phases have different algorithms of automatic observing. Observing method of crop height is developed by photography and dynamic tracking technique. The method of plant cover calculating is given out per hour, and automatic observing of crop density and leaf area will be solved through researching out the relationship between them. The AOSA will preliminarily realize visual, real time and automatic observing of main agro-meteorology observation through image processing and photogrammetry techniques.
  • Fig. 1  Technology of automatic observing system for agrometeorology

    Fig. 2  Measurements of automatic observations for the crop developmental phases

    Fig. 3  Technology of automatic distinguishing for the crop developmental phase

    Fig. 4  The structural drawing of automatic agrometeorological observing system

    Table  1  Simulating result of visual area of CCD sensor with different heights and resolutions (unit:cm2)

    CCD高度/m 焦距/mm 作物高度/m
    2.5 1 0.5 0.25 0.1 0.05
    3 16 3392 54272 84535 102141 113590 117312
    19 2332 37488 58786 70956 78848 81380
    21 1880 30369 47561 57597 63987 65988
    24 1470 22908 36157 43510 48441 50184
    4 16 30369 121794 165837 190163 205261 210672
    19 21120 84535 114639 131738 142416 145812
    21 17017 68593 92852 106982 115630 118314
    24 13000 51750 70664 80808 87156 90146
    5 16 84535 216240 273798 304818 325520 331168
    19 58786 150025 189766 212100 224640 229862
    21 47561 121794 153510 171158 182052 186362
    24 36157 92241 116625 129560 137973 140904
    DownLoad: Download CSV

    Table  2  The crop pictures size under different taking photo conditions

    CCD传感器分辨率 成像像素
    3684×2638 80
    1824×1368 25
    912×684 6
    456×342 2
    注:以玉米出苗期为例,CCD传感器安装高度为3 m、焦距为16 mm。
    DownLoad: Download CSV
  • [1]
    中国气象局.农业气象观测规范.北京:气象出版社, 1993.
    [2]
    张霭琛.现代气象观测.北京:北京大学出版社, 2000:193-226.
    [3]
    胡萌琦, 黎家宜, 唐新, 等.基于虚拟仪器技术的农业气象自动观测系统研究.气象研究与应用, 2010, 32(2):57-59. http://www.cnki.com.cn/Article/CJFDTOTAL-GXQX201002018.htm
    [4]
    刘志平, 孙涵, 胡萌琦.农业气象自动化观测原理样机的研制.安徽农业科学, 2010, 38(17): 9287-9289. doi:  10.3969/j.issn.0517-6611.2010.17.170
    [5]
    黎家宜, 胡萌琦, 林宗桂.农业气象自动观测站的建设及管理.气象研究与应用, 2008, 29(4):35-37. http://www.cnki.com.cn/Article/CJFDTOTAL-GGYT201419151.htm
    [6]
    林墨, 林宗桂, 胡萌琦.一种可变采样率数据采集方法与应用.气象研究与应用, 2008, 29(4):77-79. http://www.cnki.com.cn/Article/CJFDTOTAL-GXQX200804025.htm
    [7]
    赵爱国, 聂彦将, 侯旭宏, 等.适用于寒旱区十要素无人自动气象站的研制.高原气象, 2003, 22(6): 646-649. http://www.cnki.com.cn/Article/CJFDTOTAL-GYQX200306020.htm
    [8]
    李雁, 梁海河, 孟昭林, 等.自动气象站运行效能统计.应用气象学报, 2009, 20(4):505-509. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=200904017&flag=1
    [9]
    张枝军.图像处理技术.北京:北京大学出版社, 2006.
    [10]
    Gray W J, Richard J. LabVIEW图形编程. 武嘉澍, 陆劲昆, 译. 北京: 北京大学出版社, 2002: 3-6.
    [11]
    中国气象局.生态气象观测规范.北京:气象出版社, 2005.
    [12]
    钟阳和, 石生锦, 黄彬香.农业小气候.北京:气象出版社, 2009.
    [13]
    袁光明, 吴宁强, 郭新, 等.农业气象观测数据自动化处理系统.陕西气象, 2002(4):20-22. http://www.cnki.com.cn/Article/CJFDTOTAL-SXQI200204007.htm
    [14]
    中国气象局.地面气象观测规范.北京:气象出版社, 2008.
    [15]
    王小雷, 任学军, 胡敬芳, 等.附加电阻高频电容法土壤水分传感器的研究.河南农业大学学报, 2008, 42(6):689-692. http://cdmd.cnki.com.cn/Article/CDMD-10466-2009255534.htm
    [16]
    冶林茂, 吴志刚, 牛素军, 等.GStar-Ⅰ型电容式土壤水分监测仪设计与应用.气象与环境科学, 2008, 31(3):82-85. http://www.cnki.com.cn/Article/CJFDTOTAL-HNQX200803018.htm
    [17]
    王晓云, 郭文利, 奚文.利用"3S"技术进行北京地区土壤水分监测应用技术研究.应用气象学报, 2002, 13(4):422-429. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20020457&flag=1
    [18]
    陈金华, 杨再强, 杨太明, 等.安徽省土壤水分监测预测系统.应用气象学报, 2011, 22(2):249-256. doi:  10.11898/1001-7313.20110214
    [19]
    刘旭林, 赵文芳, 刘国宏.基于WebGIS的气象信息显示和查询系统.应用气象学报, 2008, 19(1):116-122. doi:  10.11898/1001-7313.20080119
  • 加载中
  • -->

Catalog

    Figures(4)  / Tables(2)

    Article views (4386) PDF downloads(2772) Cited by()
    • Received : 2011-06-22
    • Accepted : 2011-10-12
    • Published : 2012-02-29

    /

    DownLoad:  Full-Size Img  PowerPoint