Zhang Xiaoye, Zhang Yangmei, Cao Guoliang. Aerosol chemical compositions of Beijing PM1 and its control countermeasures. J Appl Meteor Sci, 2012, 23(3): 257-264.
Citation: Zhang Xiaoye, Zhang Yangmei, Cao Guoliang. Aerosol chemical compositions of Beijing PM1 and its control countermeasures. J Appl Meteor Sci, 2012, 23(3): 257-264.

Aerosol Chemical Compositions of Beijing PM1 and Its Control Countermeasures

  • Received Date: 2012-04-09
  • Rev Recd Date: 2012-05-01
  • Publish Date: 2012-06-30
  • The mass concentrations of sulfate, nitrate, ammonium products, organic matter and black carbon are measured at urban Beijing during summer, autumn of 2007 and winter, spring of 2008. Combining assessment of major chemical compositions in less than 10 micron particles with at least an entire year data from various rural and urban sites in 16 areas of the world, the concentration level of mineral aerosol in China, which is partially a result of sand and dust transported from desert areas and contributions from urban fugitive dust/fly ash sources, is found to be almost equivalent to or even higher than the sum of all kind of aerosols in urban Europe and North America, suggesting the control countermeasures for aerosol particle in diameter between 2.5 and 10 micron in China should not be neglected, especially when the country pays much attention to control the fine PM2.5 particles. In urban Beijing, the averaged concentrations of PM1 are around 94, 74, 66 μg·m-3 and 91 μg·m-3 for spring, summer, autumn and winter, respectively, with the annual mean of 81 μg·m-3. The relative contributions of organics, sulfate, nitrate and ammonium product are about 41%, 16%, 13% and 8%, respectively. The black carbon and chloride contribute Beijing PM1 about 11% and 3%, respectively. The fine mineral aerosol contributes about 7%. The key of control PM2.5 is to reduce the main emission species and their chemical transformation of PM1 particles, and the more important is to control the organic matter at Beijing, although Beijing's pollution control has been very difficult since 26 million people living there. To be scientifically, even if China's control countermeasures can achieve one hundred percent, it is also hard to reach the air quality level of Europe and North America, because of the higher background mineral aerosol level. The cost-effective control measures and new PM2.5 standard considering the health of Chinese need to be further investigated.
  • Fig. 1  Bar chart plots summarizing the mass concentration of 6 major types of aerosol particles in diameter smaller than 10 μm with at least an entire year data from various rural and urban sites in 16 continental areas of the world[10]

    Fig. 2  Percentage of chemical species of PM1 in Beijing during 2007—2008

    Fig. 3  Relative contributions of various sources for primary OC emission in Beijing during 2008

    Fig. 4  Relative contributions of various sources for VOCs emission in Beijing during 2008

    Fig. 5  Relative contributions of various sources for BC emission in Beijing during 2008

    Fig. 6  Relative contributions of various sources for SO2 emission in Beijing during 2008

    Fig. 7  Relative contributions of various sources for NOx emission in Beijing during 2008

    Fig. 8  Relative contributions of various sources for NH3 emission in Beijing during 2008

    Table  1  Mass concentration and chemical composition of PM1 in Beijing (unit:μg·m-3)

    气溶胶化学组成 春季 (2008-04-10—05-04,565 h) 夏季 (2007-08-06—08-31,515 h) 秋季 (2007-11-10—11-30,476 h) 冬季 (2008-01-04—02-03,670 h)
    平均值 标准差 平均值 标准差 平均值 标准差 平均值 标准差
    有机物 34.3 13.3 28.4 14.4 29.5 22.2 42.6 25.0
    硫酸盐 15.6 10.7 18.0 15.1 7.0 7.9 11.4 8.8
    硝酸盐 16.3 11.9 9.3 11.4 7.6 7.4 9.2 6.8
    铵盐 8.5 5.5 7.1 6.4 4.7 4.4 6.4 4.6
    黑碳 9.4 7.8 8.1 11.6
    氯化物 1.6 1.2 0.7 1.1 2.7 2.5 3.5 2.6
    矿物气溶胶 8.0 1.3 4.3 1.7 5.6 1.3 6.4 1.4
    PM1 94 74 66 91
    ① 考虑一次有机物与黑碳同源,并认为总有机物中有约50%为二次转化的粒子[10],根据夏季与其他三季一次有机物浓度的比值以及夏季测到的黑碳质量浓度,估算的黑碳质量浓度。
    ② 同期通过光学方法观测到的黑碳质量浓度,其转化和标校考虑了矿物气溶胶的贡献[13]
    ③ 我国华北矿物气溶胶春、夏、秋、冬的平均质量浓度约为106,57,74 μg•m-3和86 μg•m-3[10], 小于1 μm矿物气溶胶在北京占总矿物气溶胶的比例约为7.5%(5%~10%[12]),以此估算获得的细粒子矿物气溶胶质量浓度。
    DownLoad: Download CSV
  • [1]
    Seinfeld J H, Pandis S N. From Air Pollution to Climate Change//Atmospheric Chemistry and Physics. New York: John Wiley, 1998.
    [2]
    Heintzenberg J. Find particles in the global troposphere. Tellus, 1989, 41B: 149-160. doi:  10.1111/teb.1989.41B.issue-2
    [3]
    刘辉, 贺克斌, 马永亮, 等. 2008年奥运前后北京城、郊PM2.5及其水溶性离子变化特征.环境科学学报, 2011, 31(1): 177-185. http://www.cnki.com.cn/Article/CJFDTotal-HJXX201101024.htm
    [4]
    张仁健, 徐永福, 韩志伟. ACE-Asia期间北京PM2.5的化学特征及其来源分析.科学通报, 2003, 48(7): 730-733. http://d.wanfangdata.com.cn/Periodical/kxtb200307020
    [5]
    王玮, 汤大钢, 刘红杰, 等.中国PM2.5污染状况和污染特征的研究.环境科学研究, 2000, 13(1): 1-5. http://www.cnki.com.cn/Article/CJFDTotal-HJXX200001000.htm
    [6]
    薛立杰, 苏领彦, 吴少伟, 等.北京市大气PM2.5中四种水溶性阴离子的水平变化比较.生态环境学报, 2011, 20:1315-1319. doi:  10.3969/j.issn.1674-5906.2011.08.021
    [7]
    He K, Yang F, Ma Y, et al. The characteristics of PM2.5 in Beijing, China. Atmos Environ, 2001, 35: 4959-4970. doi:  10.1007/s13143-014-0016-7
    [8]
    Zhang Y M, Zhang X Y, Sun J Y, et al. Characterization of new particle and secondary aerosol formation during summertime in Beijing, China. Tellus, 2011, 63B: 382-394. doi:  10.1111/j.1600-0889.2011.00533.x/abstract
    [9]
    张养梅.京津冀地区亚微米气溶胶特征及其变化的观测分析研究.北京:中国科学院研究生院, 2010.
    [10]
    Zhang X Y, Wang Y Q, Niu T, et al. Atmospheric aerosol compositions in China: Spatial/temporal variability, chemical signature, regional haze distribution and comparisons with global aerosols. Atmos Chem Phys, 2012, 11: 26571-26615. http://www.atmos-chem-phys.net/12/779/2012/acp-12-779-2012.pdf
    [11]
    郝明途, 林天佳, 刘淼.我国PM2.5的污染状况和污染特征.环境科学与管理, 2006, 31: 58-67. doi:  10.3969/j.issn.1673-1212.2006.08.020
    [12]
    Zhang X, Arimoto R, An Z, et al. Atmospheric trace elements over source regions for Chinese dust: Concentrations, sources and atmospheric deposition on the Loess Plateau. Atmos Environ, 1993, 27: 2051-2067. doi:  10.1016/0960-1686(93)90277-6
    [13]
    Zhang X Y, Wang Y Q, Zhang X C, et al. Aerosol monitoring at multiple locations in China: Contributions of EC and dust to aerosol light absorption. Tellus, 2008, 60B: 647-656, 10.1111/j.1600-0889.2008.00359. doi:  10.1111/j.1600-0889.2008.00359.x
    [14]
    Cao G, Zhang X, Zheng F. Inventory of black carbon and organic carbon emissions from China. Atmos Environ, 2006, 40: 6516-6527. doi:  10.1016/j.atmosenv.2006.05.070
    [15]
    Cao G L, Zhang X Y, Gong S L, et al. Emission inventories of primary particles and pollutant gases for China. Chinese SCI Bull, 2011, 56: 781-788. doi:  10.1007/s11434-011-4373-7
    [16]
    Zhang X Y, Gong S L, Zhao T L, et al. Sources of Asian dust and role of climate change versus desertification in Asian dust emission. Geophys Res Let, 2003, 30: 2272 10.1029/2003GL018206. doi:  10.1029/2003GL018206/full
    [17]
    Li W, Shao L. Transmission electron microscopy study of aerosol particles from the brown hazes in northern China. J Geophys Res, 2009, 114: D09302. doi:  10.1029/2008JD011285/abstract
  • 加载中
  • -->

Catalog

    Figures(8)  / Tables(1)

    Article views (5140) PDF downloads(1598) Cited by()
    • Received : 2012-04-09
    • Accepted : 2012-05-01
    • Published : 2012-06-30

    /

    DownLoad:  Full-Size Img  PowerPoint