Tan Guirong, Duan Hao, Ren Hongli. Statistical correction for dynamical prediction of 500 hPa height field in mid-high latitudes. J Appl Meteor Sci, 2012, 23(3): 304-311.
Citation: Tan Guirong, Duan Hao, Ren Hongli. Statistical correction for dynamical prediction of 500 hPa height field in mid-high latitudes. J Appl Meteor Sci, 2012, 23(3): 304-311.

Statistical Correction for Dynamical Prediction of 500 hPa Height Field in Mid-high Latitudes

  • Received Date: 2011-08-19
  • Rev Recd Date: 2012-02-21
  • Publish Date: 2012-06-30
  • In terms of the Météo France model data of DEMETER project, the performance of ensemble forecast system at 500 hPa height field of winter in mid-high latitudes (20°—90°N) is studied, then both optimum subset regression (OSR) and dynamical analogue prediction (DAP) method are used to improve the model prediction. First, empirical orthogonal function (EOF) analysis is applied to investigate the observed 500 hPa height field of 1958—1991. The time coefficients of different modes for the numerical model are calculated by projecting the model data onto the observed EOF basement. Then the performance of the model modes based on empirical orthogonal function (EOF) of observations is examined by calculating the anomaly correlation coefficient (ACC) between the time coefficients of the leading 10 model and observed EOF modes. Next, the optimum subset regression (OSR) experiential model is established to advance the model prediction on the modes, which are predicted by the numerical modes with very low skill (i.e., low skill modes). Finally, the mean time coefficients of 5 observed similarity years on each low skill mode are substituted for those of the model prediction, where the similarity year is defined as its time coefficient estimated by OSR has minor difference from that of the prediction year. In this way, the analogue method is employed to correct the model prediction on OSR basis, namely, OSR-based analogue method. The results suggest that the prediction ability of the mode accounting for less variance may be higher than the mode with more variance, such as the 2nd and 3rd EOF modes have low skill but with large variance contribution to total variance of the model field. OSR fails in advancing the model prediction. The DAP method based on OSR (DAP-OSR) shows a possibility of improving the prediction techniques with ACC increasing 0.1 by correcting the bad modes of model while OSR fails.Correcting the dynamic prediction by combing the advantages of the numerical models and statistic methods, the nonlinear analogue method based on linear OSR shows a possibility of improving the prediction techniques by correcting the EOF modes, which are predicted by the numerical modes with very low skills. However, since the numerical model has a poor capability in representing the 2nd and 3rd EOF modes of the observation which account for large percent of total variance, and the forecast ability can not be improved effectively because the model prediction information is not enough or incorrect. Therefore, it is necessary to make further analysis on the samples of the modes, predicted with low skill by the numerical model, and the corresponding external forcing. The external forcing might be more effective to improve the correction for such modes with low skill.
  • Fig. 1  Frame of the correction scheme

    Fig. 2  Variation of anomaly correlation coefficients with the numbers of EOF modes during OSR cross-validating experiment from 1958 to 1991

    Fig. 3  Frame of OSR-DAP correction scheme

    Fig. 4  The anomaly correlation coeffients of cross-validating from 1958 to 1991

    Fig. 5  Differences of anomaly correlation coefficient between the observed and those by DAP-OSR cross-validating and the raw model from 1958 to 1991

    Fig. 6  Anomaly correlation coefficents of independent prediction from 1992 to 2001

    Fig. 7  The advance of anomaly correlation coefficents by analogue correction scheme of independent prediction from 1992 to 2001

    Fig. 8  The correlation coefficients of observations to predicted 500 hPa height fields by the raw model (a) and DAP-OSR (b) from 1958 to 1991(the shaded denotes passing the test of 0.05 level)

    Table  1  Correlation coefficients between the leading 10 EOF modes of the model predictions and observations

    模态 时间相关系数 累积方差贡献率/%
    1 0.440 35
    2 0.075 49
    3 0.082 60
    4 0.510 69
    5 0.120 75
    6 -0.333 80
    7 0.087 83
    8 0.290 86
    9 -0.211 89
    10 0.120 91
    DownLoad: Download CSV
  • [1]
    丑纪范, 徐明.短期气候数值预测的进展和前景.科学通报, 2001, 46(11): 890-895. doi:  10.3321/j.issn:0023-074X.2001.11.002
    [2]
    肖子牛.我国短期气候检测预测业务进展.气象, 2010, 36(7):21-25. doi:  10.7519/j.issn.1000-0526.2010.07.006
    [3]
    陈伯民, 纪立人, 杨培才, 等.改善月动力延伸预报水平的一种新途径.科学通报, 2003, 48(5):513-520. http://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200305021.htm
    [4]
    王会军, 张颖, 郎咸梅.论气候预测的对象问题.气候与环境研究, 2010, 15(3):225-228. http://www.cnki.com.cn/Article/CJFDTOTAL-QHYH201003002.htm
    [5]
    艾孑兑秀, 孙林海, 宋文玲.NCC_CGCM产品对长江中下游夏季降水预报的释用.应用气象学报, 2010, 21(4):484-490. doi:  10.11898/1001-7313.20100412
    [6]
    刘绿柳, 孙林海, 廖要明, 等.基于DERF的SD方法预测月降水和极端降水日数.应用气象学报, 2011, 22(1):77-85. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20110108&flag=1
    [7]
    邱崇践, 丑纪范.天气预报的相似-动力方法.大气科学, 1989, 13(1):22-28. http://cpfd.cnki.com.cn/Article/CPFDTOTAL-ZGQX201307001046.htm
    [8]
    黄建平, 王绍武.相似-动力模式的季节预报试验.中国科学B辑, 1991, 21(2):216-224. http://www.cnki.com.cn/Article/CJFDTOTAL-JBXK199102013.htm
    [9]
    Zeng Qingcun, Zhang Banglin, Yuan Chongguang, et al. A note on some methods suitable for verifying and correcting the prediction of climate anomaly. Adv Atmos Sci, 1994, 11(2):121-127. doi:  10.1007/BF02666540
    [10]
    Feddersen H, Navarra A, Ward W N. Reduction of model systematic error by statistical correction for dynamical seasonal predictions. J Climate, 1999, 12(7):1974-1989. doi:  10.1175/1520-0442(1999)012<1974:ROMSEB>2.0.CO;2
    [11]
    鲍名, 倪允琪, 丑纪范.相似-动力模式的月平均环流预报试验.科学通报, 2004, 49(11):1112-1115. doi:  10.3321/j.issn:0023-074X.2004.11.017
    [12]
    柯宗建, 张培群, 董文杰, 等.最优子集回归方法在季节气候预测中的应用.大气科学, 2009, 33(5):994-1002. http://www.cnki.com.cn/Article/CJFDTOTAL-DQXK200905012.htm
    [13]
    任宏利, 丑纪范.统计动力相结合的相似误差订正法.气象学报, 2005, 63(6):988-993. doi:  10.11676/qxxb2005.094
    [14]
    丑纪范, 任宏利.数值天气预报——另类途径的必要性和可行性.应用气象学报, 2006, 17(2):240-244. doi:  10.11898/1001-7313.20060216
    [15]
    郑志海, 封国林, 丑纪范, 等.数值预报中自由度的压缩及误差相似性规律, 应用气象学报, 2010, 21(2): 139-148. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20100202&flag=1
    [16]
    任宏利, 张培群, 李维京, 等.基于多个参考态更新的动力相似预报方法及应用.物理学报, 2006, 55(8):4388-4396. doi:  10.7498/aps.55.4388
    [17]
    任宏利.动力季节预测中预报误差与物理因子的关系.应用气象学报, 2008, 19(3):276-286. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20080347&flag=1
    [18]
    秦正坤.短期气候数值预测的误差订正和超级集合方法研究.南京:南京信息工程大学, 2007.
    [19]
    Chen H, Lin Z H. A correction method suitable for dynamical seasonal prediciton. Adv Atmos Sci, 2006, 23(3):425-430. doi:  10.1007/s00376-006-0425-3
    [20]
    任宏利, 丑纪范.数值模式的预报策略和方法研究进展.地球科学进展, 2007, 22(4):376-385. http://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ200704006.htm
    [21]
    任宏利, 丑纪范.动力相似预报的策略和方法研究.中国科学D辑:地球科学, 2007, 37(8):1101-1109. http://cdmd.cnki.com.cn/Article/CDMD-10730-2006088472.htm
    [22]
    任宏利.短期气候预测中基于预报因子的误差订正方法研究.自然科学进展, 2007, 17(12):1651-1656. doi:  10.3321/j.issn:1002-008x.2007.12.007
    [23]
    魏凤英, 黄嘉佑.大气环流降尺度因子在中国东部夏季降水预测中的作用.大气科学, 2001, 34(1):202-212. http://www.cnki.com.cn/Article/CJFDTOTAL-DQXK201001019.htm
    [24]
    王启光, 封国林, 郑志海, 等.长江中下游汛期降水多因子组合客观定量化预测研究.大气科学, 2011, 35(2): 287-297. http://www.cnki.com.cn/Article/CJFDTOTAL-DQXK201102009.htm
    [25]
    郑志海, 任宏利, 黄建平.基于季节气候可预报分量的相似误差订正方法和数值实验.物理学报, 2009, 58(10):7359-7367. doi:  10.3321/j.issn:1000-3290.2009.10.114
    [26]
    Adam J C, John S K, David J S, et al. Probabilistic precipitation forecast skill as a function of ensemble size and spatial scale in a convection-allowing ensemble. Mon Wea Rev, 2010, 139(5): 1410-1418. doi:  10.1175/2010MWR3624.1
    [27]
    Hai Lin, Gilbert B. Seasonal forecasts of Canadian winter precipitation by post processing GCM integrations. Mon Wea Rev, 2008, 136(3): 769-783. doi:  10.1175/2007MWR2232.1
    [28]
    Takemasa M. The Gaussian approach to adaptive covariance inflation and its implementation with the local ensemble transform Kalman filter. Mon Wea Rev, 2010, 139(5): 1519-1535. doi:  10.1175/2010MWR3570.1
    [29]
    Yun W T, Stefanova L, Mitra A K, et al. Multi-model synthetic super ensemble algorithm for seasonal climate prediction using DEMETER forecasts. Tellus, 2005, 57:280-289. doi:  10.3402/tellusa.v57i3.14699
    [30]
    Zeng Qingcun, Zhang Banglin, Yuan Chongguang, et al. A note on some methods suitable for verifying and correcting the prediction of climate Anomaly. Adv Atmos Sci, 1994, 11(2): 121-127. doi:  10.1007/BF02666540
    [31]
    Yun W T, Stefanova L, Mitra A K, et al. Multi-model synthetic superensembe algorithm for seasonal climate prediction using DEMETER forecasts. Tellus, 2005, 57: 280-289. doi:  10.3402/tellusa.v57i3.14699
  • 加载中
  • -->

Catalog

    Figures(8)  / Tables(1)

    Article views (3551) PDF downloads(1474) Cited by()
    • Received : 2011-08-19
    • Accepted : 2012-02-21
    • Published : 2012-06-30

    /

    DownLoad:  Full-Size Img  PowerPoint