Tang Jia, Wu Bingyi. Inter-decadal shift of East Asian summer monsoon in the early 1990s. J Appl Meteor Sci, 2012, 23(4): 402-413.
Citation: Tang Jia, Wu Bingyi. Inter-decadal shift of East Asian summer monsoon in the early 1990s. J Appl Meteor Sci, 2012, 23(4): 402-413.

Inter-decadal Shift of East Asian Summer Monsoon in the Early 1990s

  • Received Date: 2011-12-12
  • Rev Recd Date: 2012-06-01
  • Publish Date: 2012-08-31
  • Using JRA-25 and NCEP/NCAR reanalysis data from 1979 to 2009, dominant modes of summer season (June—August) 850 hPa wind field variability over East Asia is revealed by means of the complex vector empirical orthogonal function method. The two reanalysis data are consistent with the description of the first East Asian summer monsoon (EASM) mode, whereas the first mode had been studied, showing that the first mode could not reflect the inter-decadal shift of Chinese summer precipitation in the early 1990s. Consequently, the inter-decadal shift feature of the second EASM mode is deeply analyzed, as well as its effect on summer precipitation in China. Moreover, the possible external forcing factors exerting effects on the inter-decadal shift of EASM are discussed.Results show that, EASM which is revealed by two sets of reanalysis data to have undergone one inter-decadal shift in the early 1990s. The inter-decadal shift time of EASM is consistent with the inter-decadal shift time of summer precipitation in China. EASM is closely related to the mid-high latitude atmospheric circulation anomalies. Corresponding anomalous 500 hPa geopotential height fields show an anomalous quasi-zonal teleconnection pattern in northern Eurasia, whereas the distribution of summer precipitation anomalies show a meridional dipole pattern. Accompanied by the inter-decadal shift of EASM, after the early 1990s, summer precipitation decreases in the majority of northern China, especially in north of the northeast and the area between the Yangtze River and the Yellow River in the vicinity of 105°E. While summer precipitation increases significantly in South China and the Huaihe River Basin. From the perspective of dynamic, the characteristics of inter-decadal shift of summer precipitation in China are described. The difference distribution of summer 500 hPa geopotential height fields between two periods (1993—2009 and 1979—1992) show northern Eurasian quasi-zonal teleconnection pattern, then the difference distribution of summer 850 hPa wind fields show the structure that there are two anomalous anti-cyclonic circulations in southeast of Lake Baikal and south of Japan, while there are two anomalous cyclonic circulations in southern China and Okhotsk Sea.The possible external forcing for the inter-decadal shift of EASM are various, including summer sea surface temperature (SST) in the northwestern Pacific, north Indian Ocean and the part of high latitude ocean (North Atlantic and North Pacific), as well as changes of spring Eurasia snow water equivalent in the early 1990s, inter-decadal shift of spring Arctic sea ice in the early 1990s, especially the high-latitude forcing factor. The role of these external forcing in inter-decadal shift of EASM is unclear and further study is essential.
  • Fig. 1  Regression map of the summer mean 850 hPa wind (a) M21, (b) M22, (c) normalized time series of M21 and M22

    Fig. 2  Regression of summer mean 500 hPa heights derived from a linear regression on M21(a) and M22(b)(unit: gpm)(the light and dark shaded areas denote that height anomalies are significant at 0.05 and 0.01 levels, respectively)

    Fig. 3  Regression of Chinese summer rainfall derived from a linear regression on M21(a) and M22(b)

    (blue contours denote summer rainfall anomalies significant at 0.05 level)

    Fig. 4  7-year running means of the normalized time series of M21 and M22(a) and with J21 and J22(b) besides M-K statistic curve line of M21(c) and J21(d)

    (two thin solid lines denote 0.05 significant level)

    Fig. 5  The difference distribution of summer (JJA) rainfalls in China between 1993—2009 and1979—1992 with t-test

    (blue contours denote summer rainfall anomalies significant at 0.05 level)

    Fig. 6  The difference distribution of summer 850 hPa wind between the two periods (1993—2009 and 1979—1992) (shaded areas denote that meridional wind anomalies are significant at 0.05 level) with mean 500 hPa height (unit: gpm)(the light and dark shaded areas denote height anomalies are significant at 0.05 and 0.01 levels, respectively) (a) the difference of wind derived from NCEP/NCAR reanalysis data, (b) the difference of wind derived from JRA-25 reanalysis data, (c) the difference of height derived from NCEP/NCAR reanalysis data, (d) the difference of height derived from JRA-25 reanalysis data

    Fig. 7  The difference distribution of summer sea surface temperature between the two periods (1993—2009 and 1979—1992) with t-test (unit:℃)

    (light and dark shaded areas denote the summer sea surface temperature anomalies are significant at 0.05 and 0.01 levels, respectively)

    Fig. 8  The difference distribution of spring mean snow-water equivalent between the two periods (1993—2007 and 1979—1992)(a) and the t-test of the difference distribution of spring mean snow-water equivalent (b)(the red and blue areas denote positive and negative anomalies of spring mean snow-water equivalent are significant at 0.05 level)

    Fig. 9  The difference distribution of Arctic sea ice concentration (SIC) in spring and the distribution of EOF1 of spring SIC (a) the distribution of difference of spring Arctic SIC between the two periods

    (1993—2009 and 1979—1992)(red and blue areas denote that positive and negative anomalies of the spring Arctic SIC are significant at 0.05 level), (b) spatial distribution of EOF1, (c) M-K statistic line of EOF1 time series (two thin solid lines denote 0.05 significant level)

  • [1]
    Ding Y H. The variability of the Asian summer monsoon. J Meteorol Soc Jpn, 2007a, 85B: 21-54. doi:  10.2151/jmsj.85B.21
    [2]
    赵平, 南素兰.气候和气候变化领域的研究进展.应用气象学报, 2006, 17(6):725-735. doi:  10.11898/1001-7313.20060610
    [3]
    Ding Y H, Wang Z Y, Sun Y. Inter-decadal variation of the summer precipitation in East China and its association with decreasing Asian summer monsoon.Part Ⅰ: Observed evidences. Int J Climatol, 2007, 28(9): 1139-1161. doi:  10.1002/joc.1615/full
    [4]
    Wu B Y, Zhang R H, Wang B, et al. On the association between spring Arctic sea ice concentration and Chinese summer rainfall. Geophys Res Lett, 2009, 36(9): L09501. http://www.cnki.com.cn/Article/CJFDTotal-DQJZ200904007.htm
    [5]
    黄荣辉, 徐予红, 周连童.我国夏季降水的年代际变化及华北干旱化趋势.高原气象, 1999, 18(4): 465-476. http://www.cnki.com.cn/Article/CJFDTOTAL-GYQX199904000.htm
    [6]
    赵平, 周秀骥.近40年我国东部降水持续时间和雨带移动的年代际变化.应用气象学报, 2006, 17(5):548-556. doi:  10.11898/1001-7313.20060512
    [7]
    张庆云, 吕俊梅, 杨莲梅, 等.夏季中国降水型的年代际变化与大气内部动力过程及外强迫因子关系.大气科学, 2007, 31(6): 1290-1300. http://www.cnki.com.cn/Article/CJFDTOTAL-DQXK200706024.htm
    [8]
    黄荣辉, 陈际龙, 刘永.我国东部夏季降水异常主模态的年代际变化及其与东亚水汽输送的关系.大气科学, 2011, 35(4): 589-606. http://www.cnki.com.cn/Article/CJFDTOTAL-DQXK201104001.htm
    [9]
    刘海文, 丁一汇.华北夏季降水的年代际变化.应用气象学报, 2011, 22(2):129-137. doi:  10.11898/1001-7313.20110201
    [10]
    Nitta T. Convective activities in the tropical western Pacific and their impact on the Northern Hemisphere summer circulation. J Meteorol Soc Jpn, 1987, 65(3): 373-390. doi:  10.2151/jmsj1965.65.3_373
    [11]
    Wallace J M, Gutzler D S. Teleconnections in the geopotential height field during the Northern Hemisphere winter. Mon Wea Rev, 1981, 109(4): 784-812. doi:  10.1175/1520-0493(1981)109<0784:TITGHF>2.0.CO;2
    [12]
    邓伟涛, 孙照渤, 曾刚, 等.中国东部夏季降水型的年代际变化及其与北太平洋海温的关系.大气科学, 2009, 33(4):835-846. http://www.cnki.com.cn/Article/CJFDTOTAL-DQXK200904017.htm
    [13]
    Kwon M, Jong-Ghap J, Wang B, et al. Decadal change in relationship between east Asian and WNP summer monsoons. Geophys Res Lett, 2005, 32(16): L16709. doi:  10.1029/2005GL023026
    [14]
    Wang B, Fan Z. Choice of South Asian summer monsoon indices. Bull Amer Meteor Soc, 1999, 80(4): 629-638. doi:  10.1175/1520-0477(1999)080<0629:COSASM>2.0.CO;2
    [15]
    张庆云, 陶诗言, 陈烈庭.东亚夏季风指数的年际变化与东亚大气环流.气象学报, 2003, 61(4): 559-568. http://www.cnki.com.cn/Article/CJFDTOTAL-QXXB200305005.htm
    [16]
    Shi N, Zhu Q G. An abrupt change in the intensity of the East Asian summer monsoon index and its relationship with temperature and precipitation over East China. Int J Climatol, 1996, 16(7): 757-764. doi:  10.1002/(ISSN)1097-0088
    [17]
    Huang G, Yan Z W. The East Asian summer monsoon circulation anomaly index and its interannual variations. Chinese Sci Bull, 1999, 44(14): 1325-1329. doi:  10.1007/BF02885855
    [18]
    赵平, 陈军明, 肖栋, 等.夏季亚洲—太平洋涛动与大气环流和季风降水.气象学报, 2008, 66(5): 716-729. doi:  10.11676/qxxb2008.066
    [19]
    Kwon M, Jong-Ghap J, Kyung-J H. Decadal change in east Asian summer monsoon circulation in the mid-1990s. Geophys Res Lett, 2007, 34(21): L21706. doi:  10.1029/2007GL031977
    [20]
    Wu B Y, Zhang R H, Ding Y H, et al. Distinct modes of the East Asian summer monsoon. J Clim, 2008, 21(5): 1122-1138. doi:  10.1175/2007JCLI1592.1
    [21]
    张人禾, 武炳义, 赵平, 等.中国东部夏季气候20世纪80年代后期的年代际转型及其可能成因.气象学报, 2008, 66(5): 697-706. doi:  10.11676/qxxb2008.064
    [22]
    Onogi K, Tsutsui J, Koide H, et al.The JRA-25 reanalysis. J Meteorol Soc Jpn, 2007, 85(3): 369-432. doi:  10.2151/jmsj.85.369
    [23]
    Kalnay E, Kanamitsu M, Kistler R, et al.The NCEP/NCAR 40-year reanalysis project. Bull Amer Meteor Soc, 1996, 77(3): 437-471. doi:  10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2
    [24]
    Smith T M, Reynolds R W. Extended reconstruction of global sea surface temperatures based on COADS data (1854—1997). J Clim, 2003, 16(10): 1495-1510. http://www.bioone.org/servlet/linkout?suffix=i1551-5036-68-sp1-1-bibr057&dbid=16&doi=10.2112%2FSI68-001.1&key=10.1175%2F1520-0442-16.10.1495
    [25]
    Armstrong R L, Brodzik M J, Knowles K, et al. Global Monthly EASE-Grid Snow Water Equivalent Climatology. Boulder, CO: National Snow and Ice Data Center, 2007.
    [26]
    Rayner N A, Parker D E, Horton E B, et al. Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J Geophys Res, 2003, 108(D14): 4407. doi:  10.1029/2002JD002670
    [27]
    Yang S, Lau K-M, Kim K-M. Variations of the East Asian jet stream and Asian-Pacific-American winter climate anomalies. J Clim, 2002, 15(3): 306-325. doi:  10.1175/1520-0442(2002)015<0306:VOTEAJ>2.0.CO;2
    [28]
    Inoue T, Matsumoto J. A comparison of summer sea level pressure over East Eurasia between NCEP-NCAR reanalysis and ERA-40 for the period 1960-99. J Meteorol Soc Jpn, 2004, 82(3): 951-958. doi:  10.2151/jmsj.2004.951
    [29]
    赵天保, 符淙斌.几种再分析地表气温资料在中国区域的适用性评估.高原气象, 2009, 28(3): 594-606. http://www.cnki.com.cn/Article/CJFDTOTAL-GYQX200903015.htm
    [30]
    赵天保, 华丽娟.几种再分析地表气压资料在中国区域的适用性评估.应用气象学报, 2009, 20(1): 70-79. doi:  10.11898/1001-7313.20090109
    [31]
    Kaihatu J M, Handler R A, Marmorino G O, et al. Empirical orthogonal function analysis of ocean surface currents using complex and real-vector methods. J Atmos Oceanic Technol, 1998, 15(4): 927-941. doi:  10.1175/1520-0426(1998)015<0927:EOFAOO>2.0.CO;2
    [32]
    Barnett T P. Interaction of the monsoon and Pacific trade wind system at interannual time scales.Part Ⅰ: The equatorial zone. Mon Wea Rev, 1983, 111(4): 756-773. doi:  10.1175/1520-0493(1983)111<0756:IOTMAP>2.0.CO;2
    [33]
    Wu B Y, Zhang R H, D'arrigo R. Distinct modes of the East Asian winter monsoon. Mon Wea Rev, 2006, 134(8): 2165-2179. doi:  10.1175/MWR3150.1
    [34]
    魏凤英.气候统计诊断与预测方法研究进展——纪念中国气象科学研究院成立50周年.应用气象学报, 2006, 17(6):736-742. doi:  10.11898/1001-7313.20060611
    [35]
    North G R, Bell T L, Cahalan R F, et al. Sampling errors in the estimation of empirical orthogonal functions. Mon Wea Rev, 1982, 110(7): 699-706. doi:  10.1175/1520-0493(1982)110<0699:SEITEO>2.0.CO;2
    [36]
    武炳义, 张人禾.东亚夏季风年际变率及其与中、高纬度大气环流以及外强迫异常的联系.气象学报, 2011, 69(2): 219-233. doi:  10.11676/qxxb2011.019
    [37]
    Wu Z W, Wang B, Li J P, et al. An empirical seasonal prediction model of the east Asian summer monsoon using ENSO and NAO. J Geophys Res, 2009, 114: D18120. doi:  10.1029/2009JD011733
    [38]
    魏凤英.我国短期气候预测的物理基础及其预测思路.应用气象学报, 2011, 22(1):1-11. doi:  10.11898/1001-7313.20110101
    [39]
    杨修群, 黄士松.外强迫引起的夏季大气环流异常及其机制探讨.大气科学, 1993, 17(6): 697-702. http://www.cnki.com.cn/Article/CJFDTOTAL-DQXK199306007.htm
    [40]
    李双林, 王彦明, 郜永祺.北大西洋年代际振荡 (AMO) 气候影响的研究评述.大气科学学报, 2009, 32(3): 458-465. http://www.cnki.com.cn/Article/CJFDTOTAL-NJQX200903015.htm
    [41]
    Wu B Y, Yang K, Zhang R H. Eurasian snow cover variability and its association with summer rainfall in China. Adv Atmos Sci, 2009, 26(1): 31-44. doi:  10.1007/s00376-009-0031-2
    [42]
    Wu B Y, Zhang R H, Wang B. On the association between spring Arctic sea ice concentration and Chinese summer rainfall: A further study. Adv Atmos Sci, 2009, 26(4): 666-678. doi:  10.1007/s00376-009-9009-3
  • 加载中
  • -->

Catalog

    Figures(9)

    Article views (3227) PDF downloads(1628) Cited by()
    • Received : 2011-12-12
    • Accepted : 2012-06-01
    • Published : 2012-08-31

    /

    DownLoad:  Full-Size Img  PowerPoint