Zhang Yijun, Yang Shaojie, Lü Weitao, et al. Comprehensive observation experiments and application study of artificially triggered lightning during 2006—2011. J Appl Meteor Sci, 2012, 23(5): 513-522.
Citation: Zhang Yijun, Yang Shaojie, Lü Weitao, et al. Comprehensive observation experiments and application study of artificially triggered lightning during 2006—2011. J Appl Meteor Sci, 2012, 23(5): 513-522.

Comprehensive Observation Experiments and Application Study of Artificially Triggered Lightning During 2006—2011

  • Received Date: 2012-03-12
  • Rev Recd Date: 2012-06-13
  • Publish Date: 2012-10-31
  • The Guangdong Comprehensive Observation Experiment on Lightning Discharge (GCOELD) has been conducted in Guangzhou Field Experiment Site for Lightning Research and Testing, Conghua, Guangdong, China from 2006 to 2010. In the experiments, the acoustics, optics, electricity and magneticelements of the discharge process in triggered lightning are observed synthetically. The characteristics of induced voltages produced by triggered lightning on power lines and signal lines of an automatic weather station are measured and analyzed. The triggered lightning technique is also used to test the detection efficiency and precision of lightning location system in Guangdong Province. The peak current of return stoke (RS), the transferred charge within 1 ms after the RS beginning, the half-peak width and the 10%—90% risetime for RS waveform are recorded and analyzed. The relationship between the luminosity of the lightning channel and the continuous current intensity during the initial stage and interval of the return strokes for triggered lightning flashes is analyzed. The results reveal that, on the whole, luminosity of the air-ionized part of lightning channel shows obvious positive correlation with current. Linear correlation exists between square root of integrated luminosity and current when the luminosity of lightning channel doesn't reach saturation in the high-speed images. However, the parameters in the fitting equation are slightly distinct for different processes. The 2D propagation speed of upward positive leader for the triggered lightning is about 104—105 m·s-1. The speed of downward negative leader involved in altitude triggered lightning is about 105 m·s-1. The information on the shape and velocity of the leader channel provided by the high-speed camera records and the synchronous electrical field change data are used to calculate the charge densities and current of upward positive leader for the triggered lightning. The results indicate that, prior to disintegration of the wire, the charge densities of the upward positive leaders range from several micro-coulombs to hundreds of micro-coulombs per meter, and the distribution of charge densityis strongly skewed toward the upward positive leader tips.The calculated current in the upward positive leaders ranges from less than one to dozens of amperes, and increases with the ongoing propagation of the leader. The induced voltage pulse caused by the RS on the overhead power line appears as a positive peak initially and then declines sharply, followed by a negative peak, with a period of several microseconds between the positive and negative peaks. The maximum negative and positive peaks of the bipolar induced voltages on the power line are-10.31 kV and 4.47 kV, respectively. The voltage associated with the fast-changing pulses superposed on the continuous current following the return strokes can exceed 1 kV. The waveform of voltage on the signal for wind speed shows the peak pulses resembled a "V" shape. The results of the lightning location system in Guangdong report that the flash and stroke detection efficiency are 92% and 45% for rocket-triggered lightning, respectively. The space location error ranges from 111 to 5250 m with a mean space location error of 759 m. The relative error between peak current estimated by LLS and the direct measured current from the channel bottom of artificial triggered lightning is 16.3%.
  • Fig. 1  The average fast electric field waveform (a) and the energy spectrum (b) for subsequent return strokes in natural and triggered lightning[6]

    Fig. 2  The layout for experiment field of triggered lightning

    Fig. 3  Current waveform of classical triggered lightning on 22 June 2009

    (the big figure is record of current with large range; small figures for the first and second return strokes are extended figure, from big figure, respectively; small figure for initial state is extended figure from big figure, but with small range)

    Fig. 4  Located result of broadband interferometer for dart leader involving in the triggered lightning on 1 July 2007

    Fig. 5  The induced voltages on the transmission line of automatic weather station caused by the triggered lightning on 12 August 2008

    Fig. 6  Expanded waveforms of induced voltage pulses on the live line corresponding to the first seven return strokes in Fig. 5

    Fig. 7  Return stroke peak currents from direct measurement versus corresponding values from lightening location system for artificial-triggered lightning strokes

    Table  1  Characteristics of return stroke current parameters

    统计量 Ipeak/kA tHPW/μs t/μs G/(kA·μs-1) Gmax/(kA·μs-1) Q1/C AI1/(103 A2·s)
    最小值 6.67 6.18 0.22 3.90 10.00 0.44 1.11
    最大值 31.93 74.19 2.25 74.98 117.08 4.16 28.89
    算术平均值 17.43 23.93 0.53 34.93 63.40 1.76 9.41
    几何平均值 16.07 19.29 0.44 29.61 54.01 1.36 5.39
    标准差 6.95 16.44 0.41 17.59 29.29 1.24 9.31
    对数标准差 0.18 0.29 0.24 0.30 0.29 0.32 0.49
    DownLoad: Download CSV
  • [1]
    Uman M A. The Lightning Discharge. Dover Publications Inc, 2001:226-228. https://www.goodreads.com/book/show/286438.The_Lightning_Discharge
    [2]
    Miki M, Rakov V A, Shindo T, et al. Initial stage in lightning initiated from tall objects and in rocket-triggered lightning. J Geophys Res, 2005, 110, D02109, doi:10.1029/ 2003JD004474.
    [3]
    Hubert P, Laroche P, Eybert-Berard, et al. Triggered lightning in New Mexico. J Geophys Res, 1984, 89:2511-2521. doi:  10.1029/JD089iD02p02511
    [4]
    Brook M, Kitagawa N, Workman E J. Quantitative study of strokes and continuing currents in lightning discharges to ground. J Geophys Res, 1962, 67:649-659. doi:  10.1029/JZ067i002p00649
    [5]
    Depasse P. Statistics on aritificially triggered lightning. J Geophys Res, 1994, 99:18515-18522. doi:  10.1029/94JD00912
    [6]
    Le Vine D M, Willett J C, Bailey J C. Comarison of fast electric field changes from subsequent return strokes of natural and triggered lightning. J Geophys Res, 1989, 94:13259-13265. doi:  10.1029/JD094iD11p13259
    [7]
    Mach D M, Rust W D. Two-dimendional speed and optical risetime estimates for natural and triggered lightning dart leaders. J Geophys Res, 1997, 102:13673-13684. doi:  10.1029/97JD00926
    [8]
    Jordan D M, Idone V P, Rakov V A, et al. Observed dart leader speed in natural and triggered lightning. J Geophys Res, 1992, 97(D9):9951-9957. doi:  10.1029/92JD00566
    [9]
    Mach D M, Rust W D. Photoelectric return-stroke velocity and peak current estimated in natural and triggered lightning. J Geophys Res, 1989, 94:13237-13247. doi:  10.1029/JD094iD11p13237
    [10]
    Rakov V A, Uman M A. Lightning: Physics and Effects. Cambridge: Cambridge University Press, 2003:108-152.
    [11]
    Horii K. Experiment of artificial lightning triggered with rocket. Mem Fac Eng Nagoya Univ Japan, 1982, 34(1): 77-112. https://www.researchgate.net/publication/285969354_EXPERIMENT_OF_ARTIFICIAL_LIGHTNING_TRIGGERED_WITH_ROCKET
    [12]
    Liu X S, Zhang Y J. Review of artificially triggered lightning study in China. TIEE Japan, 1998, 118-B (2): 170-175. https://www.jstage.jst.go.jp/article/ieejpes1990/118/2/118_2_170/_article
    [13]
    郄秀书, 张义军, 张其林.闪电放电特征和雷暴电荷结构研究.气象学报, 2005, 63(5):646-657. doi:  10.11676/qxxb2005.063
    [14]
    Qie X S, Zhao Y, Zhang Q L, et al. Characteristics of triggered lightning during Shandong artificial triggering lightning experiment (SHATLE). Atmos Res, 2009, 9: 310-315. http://www.sciencedirect.com/science/article/pii/S0169809508002019
    [15]
    Rakov V A, Uman M A, Fernandez M I, et al. Direct lightning strikes to the lightning protective system of a residential building: Triggered lightning experiments. IEEE Transactions on Power Delivery, 2002, 17(2): 575-586. doi:  10.1109/61.997942
    [16]
    陈绍东, 张义军, 杨少杰, 等.人工触发闪电引发的低压电源系统过电压特征.高电压技术, 2009, 35(12): 2944-2952. http://www.cnki.com.cn/Article/CJFDTOTAL-GDYJ200912011.htm
    [17]
    吕伟涛, 张义军, 周秀骥, 等.火箭触发闪电物理过程的光学特征分析.气象学报, 2007, 65(6):983-993. doi:  10.11676/qxxb2007.093
    [18]
    Lu W, Zhang Y, Zhou X, et al. Simultaneous optical and electrical observations on the initial processes of altitude-triggered negative lightning. Atmos Res, 2009, 91: 353-359. doi:  10.1016/j.atmosres.2008.01.011
    [19]
    刘恒毅.闪电云内放电过程的宽带干涉仪观测研究.北京:中国气象科学研究院, 2012.
    [20]
    Zhang Y J, Dong W S, Zhang G S, et al. Characteristics of the leader processes for artificially triggered lightning. Chinese Journal of Geophysics, 2003, 46:446-449. doi:  10.1002/cjg2.3383/full#references
    [21]
    Fisher R, Schnetzer G, Thottappillil R, et al. Parameters of triggered-lightning flashes in Florida and Alabama. J Geophys Res, 1993, 98(D12):22887-22902. doi:  10.1029/93JD02293
    [22]
    Depasse P. Statistics on artificially triggered lightning. J Geophys Res, 1994, 99(D9):18515-18522. doi:  10.1029/94JD00912
    [23]
    Uman M A, Rakov V A, Schnetzer G H, et al. Time derivative of the electric field 10, 14, and 30 m from triggered lightning strokes. J Geophys Res, 2000, 105(D12):15577-15595. doi:  10.1029/2000JD900046
    [24]
    Schoene J, Uman M A, Rakov V A, et al. Statistical characteristics of the electric and magnetic fields and their time derivatives 15 m and 30 m from triggered lightning. J Geophys Res, 2003, 108(D6):4192. doi:  10.1029/2002JD002698
    [25]
    Schoene J, Uman M A, Rakov V A, et al. Characterization of return-stroke currents in rocket-triggered lightning. J Geophy Res, 2009, 114, D03106, doi: 10.1029/2008JD009873.
    [26]
    张义军, 刘欣生.南方人工引发雷电试验及电流特性分析.中国电机工程学报, 1999, 19:59-62. doi:  10.3321/j.issn:0258-8013.1999.03.014
    [27]
    赵阳, 郄秀书, 孔祥贞, 等.人工触发闪电电流波形特征参数分析.物理学报, 2009, 58(9):6616-6626. doi:  10.7498/aps.58.6616
    [28]
    Lü Weitao, Zhou Enwei, Zhang Yang, et al. Correlation Analysis between Channel Current and Luminosity of Continuous Continuing Current Process in an Artificially Triggered Lightning Flash. 7th Asia-Pacific International Conference on Lightning. Chengdu, China, 2011: 322-326.
    [29]
    李俊, 张义军, 吕伟涛, 等.一次多回击自然闪电的高速摄像观测.应用气象学报, 2008, 19(4):401-411. doi:  10.11898/1001-7313.20080403
    [30]
    李俊, 吕伟涛, 张义军, 等.一次多分叉多接地的空中触发闪电过程.应用气象学报, 2010, 21(1):95-100. doi:  10.11898/1001-7313.20100113
    [31]
    Zheng D, Chen M, Zhang Y, et al. A New Method for the Calculation of the Linear Charge Density and Current in Upward Positive Leader. 2010 Asia-Pacific International Symposium on Electromagnetic Compatibility. Beijing, China, 2010.
    [32]
    郑栋, 孟青, 吕伟涛, 等.北京及其周边地区夏季地闪活动时空特征分析.应用气象学报, 2005, 16(5):638-644. doi:  10.11898/1001-7313.20050510
    [33]
    张义军, 孟青, 马明, 等.闪电探测技术发展和资料应用.应用气象学报, 2006, 17(5):611-620. doi:  10.11898/1001-7313.20060504
    [34]
    张文娟, 孟青, 吕伟涛, 等.时间差闪电监测网的误差分析和布局优化.应用气象学报, 2009, 20(4):402-410. doi:  10.11898/1001-7313.20090403
    [35]
    Jerauld J, Rakov V A, Uman U A. An evaluation of the performance characteristics of the US National Lightning Detection Network in Florida using rocket-triggered lightning. J Geophys Res, 2005, 110(10): 19106-19121. https://new.ece.ufl.edu/content/evaluation-performance-characteristics-u-s-national-lightning-detection-network-florida
  • 加载中
  • -->

Catalog

    Figures(7)  / Tables(1)

    Article views (4213) PDF downloads(1385) Cited by()
    • Received : 2012-03-12
    • Accepted : 2012-06-13
    • Published : 2012-10-31

    /

    DownLoad:  Full-Size Img  PowerPoint