Qu Youming, Cai Ronghui, Zhu Lijuan, et al. Application of cloud analysis system to typhoon molave simulation. J Appl Meteor Sci, 2012, 23(5): 551-561.
Citation: Qu Youming, Cai Ronghui, Zhu Lijuan, et al. Application of cloud analysis system to typhoon molave simulation. J Appl Meteor Sci, 2012, 23(5): 551-561.

Application of Cloud Analysis System to Typhoon Molave Simulation

  • Received Date: 2011-11-14
  • Rev Recd Date: 2012-07-04
  • Publish Date: 2012-10-31
  • The moist physical processes (mutual transformation of water substance), cloud and rain formation, and corresponding dynamic and thermal effect on precipitation forecast is important for the meso-scale and micro-scale numerical weather prediction model. In order to improve the cloud microphysical parameterization of GRAPES_Meso model, the surface cloud observation data, satellite image and Doppler radar reflectivity are analyzed, and the GRAPES Cloud Analysis System is developed referring to ARPS model and ARPS Data Analysis System (ADAS).The progress and principle of cloud analysis in meso-scale numerical weather prediction model is described at first, and then the technical feasibility of leading cloud analysis into GRAPES_Meso model is analyzed, based on which the cloud analysis module is designed. There are several monomial sub-modules in the GCAS (GRAPES Cloud Analysis System) such as the observation pre-treatment sub-module, 3D cloud cover analysis sub-module, humidity and moisture contents filed analysis sub-module. The special pre-treatment process has been designed for domestic observation data. The GRAPES Cloud Analysis System is developed for the first time which is based on LAPS (Local Analysis and Prediction System) cloud analysis program and referring to ARPS model and ADAS. The adjustment of the 3D cloud cover and initial field and cloud water and hydrometeors is analyzed when surface cloud observation data, satellite image and Doppler radar reflectivity is assimilated in the GRAPES_Meso. The performance of the GRAPES Cloud Analysis System is inspected by the simulation of the landing Typhoon Molave (0906). First, the distribution of 3D cloud cover is retrieved from the cloud analysis system. Second, the cloud water and hydrometeors is produced quickly based on the 3D cloud cover and the height of cloud top and bottom, also, the initial field is adjusted. Third, the forecast of typhoon track in the simulation has a little error, however, the cloud analysis system has displayed positive effects on typhoon landing sites and typhoon track and intensity forecasting compared to the controlled experiment. Finally, the feasibility and correctness of cloud analysis is verified by analysing the radar reflectivity derived from cloud analysis system, indicating the performance of total precipitation forecast is improved obviously.The feasibility of Cloud Analysis System and the assimilating capability are discussed. The System is suitable for operational run for its low computation cost and hot-swap support. Further more, there are some questions which deserve to be more widely debated, for example, Cloud Analysis System should match with the model, region and resolution. The quality control of Doppler radar reflectivity factor data, coordination between initial moist thermal and dynamic field are also very important.
  • Fig. 1  Typhoon Molave (0906) track from 2000 BT 18 Jul 2009 to 2000 BT 19 Jul 2009

    Fig. 2  FY-2D image of TBB at 2015 BT 18 Jul 2009

    Fig. 3  Doppler radar reflectivity of 4 km height at 2000 BT 18 Jul 2009

    Fig. 4  The increment of 4 km cloud cover with cloud analysis

    (a) the initial cloud cover, (b) cloud cover with cloud analysis

    Fig. 5  The cross section of moisture contents along 22°N (unit:g·kg-1)

    Fig. 6  The increment of relative humidity with cloud analysis (unit:%)

    (a) the increment at 11.5 km height, (b) the increment at 4 km height

    Fig. 7  Radar composite reflectivity inversed from cloud analysis system at 2000 BT 18 Jul 2009(unit:dBZ)

    Fig. 8  The comparison of typhoon track (3-hour interval) and intensity (unit:hPa) forecast

    (a) control experiment from 2000 BT 18 Jul 2009 to 1100 BT 19 Jul 2009, (b) experment with cloud analysis from 2000 BT 18 Jul 2009 to 1700 BT 19 Jul 2009

    Fig. 9  Doppler radar reflectivity of 4 km height at 2000 BT 19 Jul 2009

    Fig. 10  The forecast of radar composite reflectivity at 2000 BT 19 Jul 2009(unit:dBZ)

    Fig. 11  24 h precipitation forecast from 2000 BT 18 Jul 2009 to 2000 BT 19 Jul 2009

    (precipitation no less than 50 mm are given only, unit:mm)

  • [1]
    Donner L J. An initialization for cumulus convection in numerical weather prediction models. Mon Wea Rev, 1988, 116:377-385. doi:  10.1175/1520-0493(1988)116<0377:AIFCCI>2.0.CO;2
    [2]
    王瑾, 刘黎平. CINRAD/CD雷达反射率因子同化对中尺度数值模式云微物理量场调整的分析.高原气象, 2009, 28(1):173-185. http://www.cnki.com.cn/Article/CJFDTOTAL-GYQX200901022.htm
    [3]
    孙晶, 楼小凤, 胡志晋, 等. CAMS复杂云微物理方案与GRAPES模式耦合的数值试验.应用气象学报, 2008, 19(3):315-325. doi:  10.11898/1001-7313.20080307
    [4]
    陈德辉, 杨学胜, 张红亮, 等.多尺度非静力通用模式框架的设计策略.应用气象学报, 2003, 14(4): 452-461. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20030456&flag=1
    [5]
    楼小凤, 胡志晋, 王鹏云, 等.中尺度模式云降水物理方案介绍.应用气象学报, 2003, 14(增刊):49-59. http://www.cnki.com.cn/Article/CJFDTotal-YYQX2003S1006.htm
    [6]
    刘红亚, 徐海明, 胡志晋, 等.雷达反射率因子在中尺度云分辨模式初始化中的应用Ⅰ:云微物理量和垂直速度的反演.气象学报, 2007, 65(6):896-905. doi:  10.11676/qxxb2007.084
    [7]
    Lin Y P, Ray P S, Johnson K W. Initialization of a modeled convective storm using Doppler radar derived fields. Mon Wea Rev, 1993, 121: 2757-2775. doi:  10.1175/1520-0493(1993)121<2757:IOAMCS>2.0.CO;2
    [8]
    Xue M, Wang D, Hou D, et al. Prediction of the 7 May 1995 Squall Line over the Central US with Intermittent Data Assimilation. 12th Conf on Numerical Weather Prediction, Phoenix, AZ, Amer Meteor Soc, 1998: 191-194.
    [9]
    Xiao Qingnong, Kuo Y-H, Sun J, et al. Assimilation of Doppler Radar Observations and Its Impacts on Forecasting of the Landfalling typhoon Rusa (2002)//Proceeding of the Third European Conference on Radar Meteorology (ERAD) Together with the COST 717 Final Seminar, 2004: 178-182.
    [10]
    程兴无, 梁树献, 徐慧, 等. HUBEX期间暴雨模拟研究.气候与环境研究, 2001, 6(2):186-190. http://www.cnki.com.cn/Article/CJFDTOTAL-QHYH200102007.htm
    [11]
    徐枝芳, 徐玉貌, 葛文忠.雷达和卫星资料在中尺度模式中的初步应用.气象科学, 2002, 22(2):167-174. http://www.cnki.com.cn/Article/CJFDTOTAL-QXKX200202004.htm
    [12]
    李永平, 朱国富, 薛纪善.应用雷达回波强度资料反演大气云微物理量.气象学报, 2004, 62(6):814-820. doi:  10.11676/qxxb2004.077
    [13]
    余贞寿, 廖胜石, 黄克慧, 等.0414号台风"云娜"的数值模拟.气象学报, 2005, 63(6):903-914. doi:  10.11676/qxxb2005.086
    [14]
    施丽娟, 许小峰, 李柏, 等.雷达资料在登陆台风"桑美"数值模拟中的应用.应用气象学报, 2009, 20(3): 257-266. doi:  10.11898/1001-7313.20090301
    [15]
    屈右铭, 陆维松, 蔡荣辉, 等.GRAPES-Meso云分析系统的设计与试验.气象, 2010, 36(10):38-46. http://www.cnki.com.cn/Article/CJFDTOTAL-QXXX201010008.htm
    [16]
    伍湘君, 金之雁, 黄丽萍, 等. GRAPES模式软件框架与实现.应用气象学报, 2005, 16(4):539-546. doi:  10.11898/1001-7313.20050415
    [17]
    孙晶, 楼小凤, 胡志晋, 等. CAMS复杂云微物理方案与GRAPES模式耦合的数值试验.应用气象学报, 2008, 9(3):315-325. doi:  10.11898/1001-7313.20080307
    [18]
    李红莉, 张兵, 陈波.局地分析和预报系统 (LAPS) 及其应用.气象科技, 2008, 36(1):20-24. http://www.cnki.com.cn/Article/CJFDTOTAL-QXKJ200801005.htm
    [19]
    Zhang J, Carr F H, Brewster K. ADAS Cloud Analysis. 12th Conference on Numerical Weather Prediction. Phoenix, Amer Meteor Soc, 1998: 185-188.
    [20]
    [21]
    Xue Ming, Droegemeier K K. ARPS User's Guide (Version410). Center for Analysis and Prediction of Storms, 1995.
    [22]
    朱佩君, 陈敏, 陶祖钰, 等.登陆台风Winnie (1997) 的数值模拟研究Ⅰ:结果检验和云系的模拟.气象学报, 2002, 60(5):553-559. doi:  10.11676/qxxb2002.065
  • 加载中
  • -->

Catalog

    Figures(11)

    Article views (3240) PDF downloads(1770) Cited by()
    • Received : 2011-11-14
    • Accepted : 2012-07-04
    • Published : 2012-10-31

    /

    DownLoad:  Full-Size Img  PowerPoint