Wang Zaiwen, Zheng Zuofang, Chen Min, et al. Prediction of meteorological elements based on nonlinear support vector machine regression method. J Appl Meteor Sci, 2012, 23(5): 562-570.
Citation: Wang Zaiwen, Zheng Zuofang, Chen Min, et al. Prediction of meteorological elements based on nonlinear support vector machine regression method. J Appl Meteor Sci, 2012, 23(5): 562-570.

Prediction of Meteorological Elements Based on Nonlinear Support Vector Machine Regression Method

  • Received Date: 2012-02-01
  • Rev Recd Date: 2012-07-02
  • Publish Date: 2012-10-31
  • Nonlinear regression method based on basic support vector machine is introduced, which is able to solve nonlinear problems. The cross validation in this method makes it able to optimize the kernel function parameters.Therefore, in numerical weather prediction interpretation, nonlinear support vector machine regression technique is better than multi-variant MOS regression method when the linear relationship between the predictor and certain elements, such as wind and specific humidity, is not clear. The numerical prediction products of operational meso-scale model (MM5V3) in Beijing Meteorological Service and observations are used to make 6—48 h interpretation products with 3-hour interval of meteorological elements of 15 venues stations in Beijing. The comparison of interpretation products and MM5V3 forecast indicates that the root mean square error for 2 m temperature, 10 m wind u component, 10 m wind v component and 2 m specific humidity reduces by 12.1%, 43.3%, 53.4% and 38.2%. Compared with the prediction results of MOS, 2 m temperature, 10 m wind u compoent, v component prediction results of SVM are slightly better than those of MOS, and 2 m specific humidity prediction result of SVM is better than that of MOS.Defining the forecast with deviations no more than 2℃ as accurate for 2 m temperature, the forecast accuracy of SVM-release, MOS-release, MM5V3 model and T213 model are 66.5%, 62.2%, 58.8% and 2.5%, respectively. Forecast accuracy of 10 m wind u, v components are defined as the percentage of forecast with absolute deviations within 1 m/s, thus the forecast accuracy of SVM-release are 77.6% and 76.7%, forecast accuracy of MOS-release are 75.8% and 73.7%, forecast accuracy of MM5V3 model are 54.5% and 41.1%, and forecast accuracy of T213 model are 46.9% and 34.9%.Forecast accuracy of 2 m specific humidity is defined as the percentage of forecast with absolute deviations within 2 g·kg-1, thus the forecast accuracy of SVM-release, MOS-release and MM5V3 model are 84.9%, 67.8% and 61.7%, respectively. It shows that nonlinear support vector machine regression method is good at solving nonlinear dependence between meteorological elements and predictors, and performs better than MOS.
  • Fig. 1  The map of Olympic venues in Beijing

    Fig. 2  The 2 m temperature root mean square error (a) and bias (b) of 15 Olympic venues in Beijing provided by SVM-release, MOS-release, MM5V3 model and T213 model

    Fig. 3  The decreased root mean squre error ratio of 2 m temperature forecast from SVM-release, MOS-release to the counterpart of direct output of model

    Fig. 4  The 10 m wind u component root mean square error (a) and bias (b) of 15 Olympic venues in Beijing provided by SVM-release, MOS-release, MM5V3 model and T213 model

    Fig. 5  The 10 m wind v component root mean square error (a) and bias (b) of 15 Olympic venues in Beijing provided by SVM-release, MOS-release, MM5V3 model and T213 model

    Fig. 6  The decreased root mean square error ratio of 10 m wind u component forecast from SVM-release, MOS-release to the counterpart of direct output of model

    Fig. 7  The decreased root mean square error ratio of 10 m wind v component forecast from SVM-release, MOS-release to the counterpart of direct output of model

    Fig. 8  The 2 m specific humidity root mean square error provided by SVM-release, MOS-release (a), MM5V3 model, and the 2 m relative humidity root mean square error provided by MOS-release, T213 model (b) of 15 Olympic venues in Beijing

    Fig. 9  The decreased root mean square error ratio of 2 m specific humidity forecast from SVM-release to MM5V3 model, and the decrease root mean square error ratio of 2 m relative humidity forecast from MOS-release to T213 model

    Table  1  Selected forecast factors for SVM method

    预报量 三维模式预报因子 二维模式预报
    因子
    实况因子 因子总数
    预报因子 等压面/hPa
    2 m温度 uv、温度、位势高度、
    相对湿度、云水
    975,925,850,500,
    200
    海平面气压、
    降水量
    2 m温度、10 m风速、10 m
    风向、过去3 h总降水量
    132
    10 m风uv
    分量
    uv、位势高度 975,850,500,200 海平面气压、
    降水量
    2 m温度、本站气压、10 m
    u分量、10 m风v分量
    76
    相对湿度 1000,975,925,850
    2 m比湿 uv、相对湿度、
    温度露点差
    1000,975,925,850 降水量 10 m风u分量、10 m风v分量、
    2 m温度露点差、2 m相对湿度
    72
    DownLoad: Download CSV
  • [1]
    Klein W H, Lewis F B M, Enger I. Objective prediction of five-day mean temperatures during winter. J Meteorol, 1959, 16: 672-682. doi:  10.1175/1520-0469(1959)016<0672:OPOFDM>2.0.CO;2
    [2]
    Glahn H R, Lowry D A. The use of Model Output Statistics (MOS) in objective weather forecasting. J Appl Meteor, 1972, 11:1203-1211. doi:  10.1175/1520-0450(1972)011<1203:TUOMOS>2.0.CO;2
    [3]
    刘还珠, 赵声蓉, 陆志善, 等.国家气象中心气象要素的客观预报——MOS系统.应用气象学报, 2004, 15(2):181-191. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20040223&flag=1
    [4]
    赵声蓉.多模式温度集成预报.应用气象学报, 2006, 17(1):52-58. doi:  10.11898/1001-7313.20060109
    [5]
    曾晓青, 邵明轩, 王式功, 等.基于交叉验证技术的K-NN方法在降水预报中的试验.应用气象学报, 2008, 19(4):471-478. doi:  10.11898/1001-7313.20080411
    [6]
    陈豫英, 刘还珠, 陈楠, 等.基于聚类天气分型的KNN方法在风预报中的应用.应用气象学报, 2008, 19(5):564-572. doi:  10.11898/1001-7313.20080507
    [7]
    曹晓钟, 闵晶晶, 刘还珠, 等.分类与集成方法在降雨预报中的应用.气象, 2008, 34(10):3-11. doi:  10.7519/j.issn.1000-0526.2008.10.001
    [8]
    王迎春, 刘凤辉, 张小玲, 等.北京地区中尺度非静力数值预报产品释用技术研究.应用气象学报, 2002, 13(3):312-321. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20020341&flag=1
    [9]
    冯汉中, 陈永义.支持向量机回归方法在实时业务预报中的应用.气象, 2005, 31(1):41-44. doi:  10.11676/qxxb2005.005
    [10]
    冯汉中, 杨淑群, 刘波.支持向量机 (SVM) 方法在气象预报中的个例试验.四川气象, 2005, 25(2):9-12. http://www.cnki.com.cn/Article/CJFDTOTAL-SCCX200502004.htm
    [11]
    Vapnik V N. Statistical Learning Theory. New York:John Wiley & Sons Inc, 1998.
    [12]
    Vapnik V N. The Nature Of Statistical Learning Theory. New York:Springer Verlag, 2000.
    [13]
    陈永义, 俞小鼎, 高学浩, 等.处理非线性分类和回归问题的一种新方法 (Ⅰ)——支持向量机方法简介.应用气象学报, 2004, 15(3):345-354. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20040344&flag=1
    [14]
    冯汉中, 陈永义.处理非线性分类和回归问题的一种新方法 (Ⅱ)——支持向量机方法在天气预报中的应用.应用气象学报, 2004, 15(3):355-365. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20040345&flag=1
    [15]
    Scholkopf B, Burges C J C, Smola A J. Advance in Kernel Methods Support Vector Learning. Cambridge:MIT Press, 1999.
    [16]
    盛裴轩, 毛节泰, 李建国, 等.大气物理学.北京:北京大学出版社, 2003.
  • 加载中
  • -->

Catalog

    Figures(9)  / Tables(1)

    Article views (3617) PDF downloads(1572) Cited by()
    • Received : 2012-02-01
    • Accepted : 2012-07-02
    • Published : 2012-10-31

    /

    DownLoad:  Full-Size Img  PowerPoint