Wei Wei, Zhang Renhe, Wen Min. Meridional variation of south asian high and its relationship with the summer precipitation over China. J Appl Meteor Sci, 2012, 23(6): 650-659.
Citation: Wei Wei, Zhang Renhe, Wen Min. Meridional variation of south asian high and its relationship with the summer precipitation over China. J Appl Meteor Sci, 2012, 23(6): 650-659.

Meridional Variation of South Asian High and Its Relationship with the Summer Precipitation over China

  • Received Date: 2012-04-19
  • Rev Recd Date: 2012-09-18
  • Publish Date: 2012-12-31
  • South Asian High (SAH) is the most intense and stable upper level anticyclone in boreal summer. As a member of the East Asian Summer Monsoon system, SAH plays an important role in the regional climate anomaly over China.The meridional variation of SAH is analyzed by using the monthly mean data derived from the European Center for Medium-Range Weather Forecasts (ECMWF) 40-year reanalysis (ERA-40) from 1958 to 2002. An index of SAH (SAHI) is defined to measure its meridional variation in summer and to analyze its relationship with the summer precipitation over China. The results show a significant correlation between the meridional position of SAH and the summer rainfall over China for both the interannual timescale variability and the long-term linear tendency. The correlation coefficients between SAHI and the summer rainfall in North China and in the Yangtze River Valleys are 0.577 and-0.604, respectively, both of which exceeds 0.01 level. When SAH locates further northward (southward), North China and South China are wetter (drier) than normal, while the Yangtze River Valleys is drier (wetter) than normal. And the southward linear trend of SAH corresponds with the decreasing trend of rainfall in North China and the increasing trend of rainfall in the Yangtze River Valleys.Linear regression analysis of the circulation reveals that when SAH locates further northward, an anomalous anticyclone controls eastern China with its center tilted southward from 200 hPa to 850 hPa. In the upper atmosphere, the anomalous anticyclone forms a divergence zone over North China. In the lower atmosphere, it results in flows diverging over the Yangtze River valley, and converging over North China. Besides, the northward movement of SAH would cause the upper-level westerly jet and the Western Pacific Subtropical High move northward, with the rainbelt locating in North China.The meridional anomalous variation of SAH is closely related to the sea surface temperature anomalies (SSTA) of the Tropical Indian Ocean (TIO), the Central and Eastern Equatorial Pacific, and the northern Pacific. And the TIO SSTA might modulate its meridional position directly. Positive TIO SSTA might lead to a southward expansion of SAH.Due to strong correlation with the summer rainfall over China and being modulated by the TIO SSTA, the meridional variation of SAHI could be considered as an important indicator used to predict the regional climate anomaly.
  • Fig. 1  Definition of the South Asian High Index (SAHI)

    (a) climatology of summer geopotential height (unit: gpm) at 200 hPa from 1958 to 2002, (b) standardized time series of SAHI, (c) composites of geopotential height (unit: gpm) at 200 hPa in case of high SAHI (solid line) and low SAHI (dashed line)

    Fig. 2  Relationship between SAHI and precipitation over China

    (a) pattern of regression of anomalous precipitation over China against SAHI (correlations exceeding 0.05 level are highlighted by thick lines), (b) standardized time series of precipitation (with the linear tendency) in North China compard with SAHI series, (c) standardized time series of precipitation (with the linear tendency) in Yangtze River Valleys compared with SAHI series

    Fig. 3  Patterns of regression of anomalous horizontal wind (vector) and geopotential height (contour, unit: gpm) against SAHI at 200 hPa (a), 500 hPa (b) and 850 hPa (anomalous horizontal wind only)(c)(significant values of anomalous horizontal wind exceeding 0.05 level are shaded)

    Fig. 4  Relationship between SAHI and SSTA

    (a) linear tendency of SSTA, (b) pattern of regression of SSTA against SAHI (correlations exceeding 0.05 level are highlighted by thick lines)

    Fig. 5  Standardized time series of Indian Ocean SSTA and SAHI with their linear tendency

    Table  1  Correlations of SAHI to precipitation in North China and the Yangtze River Valleys

    指数 华北地区 长江流域
    南北偏移指数 0.577** -0.604**
    面积指数 0.061 0.382**
    中心强度I1 0.291 0.170
    强度I2 0.175 0.323*
    强度I3 0.349* 0.169
    注:*表示相关系数达到0.05显著性水平,**表示相关系数达到0.01显
    著性水平。另外,南北偏移指数外其余4项指数的定义[21]:① 面积指
    数:区域内位势高度大于或等于12500 gpm总格点数;② 中心强度I1
    高压中心位势高度值;③ 强度I2:区域内位势高度大于12500 gpm时所
    有格点上的位势高度值与12500 gpm之差的总和;④ 强度I3I2与面积
    指数之比。
    DownLoad: Download CSV
  • [1]
    Mason R B, Anderson C E. The development and decay of the 100mb summertime anticyclone over Southern Asia. Mon Wea Rev, 1963, 91: 3-12. doi:  10.1175/1520-0493(1963)091<0003:TDADOT>2.3.CO;2
    [2]
    陶诗言, 朱福康.夏季亚洲南部100毫巴流型的变化及其与西太平洋副热带高压进退的关系.气象学报, 1964, 34(4): 385-396. http://www.cnki.com.cn/Article/CJFDTOTAL-QXXB196404000.htm
    [3]
    陈隆勋, 朱乾根, 罗会邦.东亚季风.北京:科学出版社, 1991.
    [4]
    李崇银, 李琳, 谭言科.南亚高压在平流层的特征及ENSO影响的进一步研究.热带气象学报, 2011, 27(3): 289-298. http://www.cnki.com.cn/Article/CJFDTOTAL-RDQX201103001.htm
    [5]
    Krishnamurti T N, Bhalme H. Oscillations of a monsoon system. Part Ⅰ: Observational aspects. J Atmos Sci, 1976, 33: 1937-1954. doi:  10.1175/1520-0469(1976)033<1937:OOAMSP>2.0.CO;2
    [6]
    朱福康, 陆龙骅, 陈咸吉, 等.南亚高压.北京:科学出版社, 1980.
    [7]
    罗四维, 钱正安, 王谦谦.夏季100毫巴青藏高压与我国东部旱涝关系的天气气候研究.高原气象, 1982, 1(2): 1-10. http://www.cnki.com.cn/Article/CJFDTOTAL-GYQX198202000.htm
    [8]
    Zhang Q, Wu G X, Qian Y F. The bimodality of the 100 hPa South Asia High and its relationship to the climate anomaly over East Asia in summer. J Meteorol Soc Jpn, 2002, 80: 733-744. doi:  10.2151/jmsj.80.733
    [9]
    钱永甫, 张琼, 张学洪.南亚高压与我国盛夏气候异常.南京大学学报:自然科学版, 2002, 38(3): 295-307. http://www.cnki.com.cn/Article/CJFDTOTAL-NJDZ200203004.htm
    [10]
    陈桂英, 廖荃荪. 100 hPa南亚高压位置特征与我国盛夏降水.高原气象, 1990, 9(4): 432-438. http://www.cnki.com.cn/Article/CJFDTOTAL-GYQX199004011.htm
    [11]
    张琼, 吴国雄.长江流域大范围旱涝与南亚高压的关系.气象学报, 2001, 59(5): 569-577. doi:  10.11676/qxxb2001.061
    [12]
    黄樱, 钱永甫.南亚高压与华北夏季降水的关系.高原气象, 2003, 22(6): 74-79. http://www.cnki.com.cn/Article/CJFDTOTAL-GYQX200306011.htm
    [13]
    黄燕燕, 钱永甫.长江流域、华北降水特征与南亚高压的关系分析.高原气象, 2004, 23(1): 70-76. http://www.cnki.com.cn/Article/CJFDTOTAL-GYQX200401010.htm
    [14]
    梁必琪.天气学教程.北京:气象出版社, 1995: 251-257.
    [15]
    He J, Wen M, Wang L, et al. Characteristics of the onset of the Asian Summer Monsoon and the importance of Asian-Australian "land bridge". Adv Atmos Sci, 2006, 23: 951-963. doi:  10.1007/s00376-006-0951-z
    [16]
    何金海, 徐海明, 钟珊珊, 等.青藏高原大气热源特征及其影响和可能机制.北京:气象出版社, 2011.
    [17]
    孙淑清, 高守亭.现代天气学概论.北京:科学出版社, 2005.
    [18]
    尤卫红, 段长春, 赵宁坤, 等.夏季南亚高压年际变化的特征时间尺度及其时空演变.高原气象, 2006, 25(4): 601-608. http://www.cnki.com.cn/Article/CJFDTOTAL-GYQX200604005.htm
    [19]
    Uppala S M, KÅllberg P W, Simmons A J, et al. The ERA-40 re-analysis. Quart J Roy Meteor Soc, 2005, 131: 2961-3012. doi:  10.1256/qj.04.176
    [20]
    Rayner N, Brohan P, Parker D, et al. Improved analyses of changes and uncertainties in sea surface temperature measured in situ since the mid-nineteenth century: The HadSST2 dataset. J Climate, 2006, 19: 446-469. doi:  10.1175/JCLI3637.1
    [21]
    张琼, 钱永甫, 张学洪.南亚高压的年际和年代际变化.大气科学, 2000, 24(1): 67-78. http://www.cnki.com.cn/Article/CJFDTOTAL-DQXK200001006.htm
    [22]
    Yang J L, Liu Q Y, Xie S P, et al. Impact of the Indian Ocean SST basin mode on the Asian summer monsoon. Geophys Res Lett, 2007, 34: doi: 10.1029/2006GL028571.
    [23]
    Zhou T J, Yu R C, Zhang J, et al. Why the Western Pacific Subtropical High has extended westward since the late 1970s. J Climate, 2009, 22: 2199-2215. doi:  10.1175/2008JCLI2527.1
    [24]
    刘伯奇, 何金海, 王黎娟. 4~5月南亚高压在中南半岛上空建立过程特征及其可能机制.大气科学, 2009, 33(6): 1319-1332. http://www.cnki.com.cn/Article/CJFDTOTAL-NJQX201201001.htm
    [25]
    钟水新, 王东海, 张人禾, 等.基于CloudSat资料的冷涡对流云带垂直结构特征.应用气象学报, 2011, 22(3): 257-264. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20110301&flag=1
    [26]
    徐祥德, 陈联寿.青藏高原大气科学试验研究进展.应用气象学报, 2006, 17(6): 756-772. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=200606124&flag=1
    [27]
    廖荣伟, 赵平.季风湿润区冬季水汽收支年际及年代际变化特征.应用气象学报, 2011, 22(6): 641-653. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20110601&flag=1
    [28]
    陈隆勋, 张博, 张瑛.东亚季风研究的进展.应用气象学报, 2006, 17(6): 711-724. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=200606120&flag=1
    [29]
    Li S L, Lu J, Huang G, et al. Tropical Indian Ocean Basin warming and East Asian Summer Monsoon: A multiple AGCM study. J Climate, 2008, 21: 6080-6088. doi:  10.1175/2008JCLI2433.1
    [30]
    杨建玲, 刘秦玉.热带印度洋SST海盆模态的"充电/放电"作用——对夏季南亚高压的影响.海洋学报, 2008, 30(2): 12-19. http://www.cnki.com.cn/Article/CJFDTOTAL-SEAC200802002.htm
    [31]
    Zhang R H. Relations of water vapor transport from Indian monsoon with that over East Asia and the summer rainfall in China. Adv Atmos Sci, 2001, 18: 1005-1017. http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQJZ200105029.htm
    [32]
    Huang G, Qu X, Hu K M. The impact of the Tropical Indian Ocean on South Asian High in boreal summer. Adv Atmos Sci, 2011, 28: 421-432. doi:  10.1007/s00376-010-9224-y
    [33]
    谭言科, 张人禾, 何金海, 等.热带印度洋海温的年际变化与ENSO.气象学报, 2004, 62(6): 831-840. http://cdmd.cnki.com.cn/Article/CDMD-10423-1015712722.htm
    [34]
    Lau N C, Nath M J. The role of the "atmospheric bridge" in linking tropical pacific ENSO events to extratropical SST anomalies. J Climate, 1996, 9: 2036-2057. doi:  10.1175/1520-0442(1996)009<2036:TROTBI>2.0.CO;2
  • 加载中
  • -->

Catalog

    Figures(5)  / Tables(1)

    Article views (4624) PDF downloads(1491) Cited by()
    • Received : 2012-04-19
    • Accepted : 2012-09-18
    • Published : 2012-12-31

    /

    DownLoad:  Full-Size Img  PowerPoint