Tao Li, Li Guoping. Application of vertical component of convective vorticity vector to the diagnosis of a rainstorm brought by southwest vortex. J Appl Meteor Sci, 2012, 23(6): 702-709.
Citation: Tao Li, Li Guoping. Application of vertical component of convective vorticity vector to the diagnosis of a rainstorm brought by southwest vortex. J Appl Meteor Sci, 2012, 23(6): 702-709.

Application of Vertical Component of Convective Vorticity Vector to the Diagnosis of a Rainstorm Brought by Southwest Vortex

  • Received Date: 2011-12-26
  • Rev Recd Date: 2012-10-18
  • Publish Date: 2012-12-31
  • Convective vorticity vector (CVV) is employed to analyze the rainstorm caused by the shallow system of southwest vortex during 16—18 July 2010, using convective vorticity vector vertical component (Cz). The relationship between every component of the CVV and the 6-hour accumulated precipitation is investigated, particularly the meaning of vertical component in rainstorms caused by southwest vortex. It shows that the vertical component of CVV is a good indicator of the rainstorm caused by southwest vortex. The occurring time of strong precipitation and the peak value of vertical component of CVV are consistent. If [Cz] reaches an extreme value, the precipitation will change significantly, probably leading to heavy rain phenomenon.Thus the peak time of [Cz] can be an indicator of the heavy rain forecast. When the rainstorm begins, the precipitation region shows consistently positive values of Cz, with the heavy rain to strengthen. When the positive values of Cz expand larger, the contours become intensive, and the gradient increases. The scope of positive values of Cz and the rain belt are largely the same. In the distribution of lower troposphere 850 hPa level, the rainstorm area locates near the center of the positive values of Cz and tend to the larger gradient of Cz. The main cause is the positive vorticity advection in front of the westerly trough, so that the vorticity in southern Sichuan and eastern Sichuan enhance, and the wet isentropic surface becomes steeply. The rising movement and the water vapor deliver strengthens, which is beneficial to the formation of heavy rain. Along the vertical distribution of Cz in the storm center, the storm intensity increases significantly when vertical components from lower to higher troposphere show consistent positive values. This rainstorm case confirms that the convective vorticity vector can be used for analyzing the shallow meso-scale system like southwest vortex. However, there are very limited cases, so further validation and improvements are needed.
  • Fig. 1  24-hour accumulated precipitation during 16—17 July in 2010

    Fig. 2  500 hPa height field (solid line, unit:dagpm) and temperature field (dashed line, unit:℃)

    (a)0200 BT 16 July 2010, (b)0200 BT 17 July 2010

    Fig. 3  700 hPa height field (solid line, unit:dagpm) and wind field (vector)

    (a)2000 BT 16 July 2010, (b)0800 BT 17 July 2010

    Fig. 4  The nine-point smoothing curve of the regional average of vertical integration of CVV components in July 2010

    Fig. 5  The distribution of the vertical component Cz at 850 hPa during 16—17 July 2010 (unit: 10-10 m2·s-1·K·kg-1)

    Fig. 6  The distribution of the cross section of vertical component Cz along 30°N during 16—17 July 2010(unit:10-10 m2·s-1·K·kg-1)

  • [1]
    吴国雄, 蔡雅萍, 唐晓菁.湿位涡和倾斜涡度发展.气象学报, 1995, 53(4): 387-404. doi:  10.11676/qxxb1995.045
    [2]
    李国平, 万军, 卢敬华.暖性西南低涡形成的一种机制.应用气象学报, 1991, 2(1): 91-99. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=19910111&flag=1
    [3]
    李国平, 刘行军.西南低涡暴雨的湿位涡诊断分析.应用气象学报, 1994, 5(3):354-360. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=19940361&flag=1
    [4]
    Cao Z, Cho H. Generation of moist potential vorticity in extratropical cyclones.Atmos Sci, 1995, 52: 3263-3282. doi:  10.1175/1520-0469(1995)052<3263:GOMPVI>2.0.CO;2
    [5]
    Cho H, Cao Z. Generation of moist potential vorticity in extratropical cyclones. Part Ⅱ: Sensitivity to moisture distribution. Atmos Sci, 1998, 55: 595-610. doi:  10.1175/1520-0469(1998)055<0595:GOMPVI>2.0.CO;2
    [6]
    Huo Z H, Zhang D L, Gyakum J R. Interaction of potential vorticity anomalies in extratropical cyclogenesis. Part Ⅰ: Static piecewise inversion. Mon Wea Rev, 1999, 11: 2546-2562. https://www.mendeley.com/research-papers/interaction-potential-vorticity-anomalies-extratropical-cyclogenesis-part-i-static-piecewise-inversi/
    [7]
    Huo Z H, Zhang D L, Gyakum J R. Interaction of potential vorticity anomalies in extratropical cyclogenesis. Part Ⅱ: Sensitivity to initial perturbations. Mon Wea Rev, 1999, 11: 2563-2575. https://www.mendeley.com/research-papers/interaction-potential-vorticity-anomalies-extratropical-cyclogenesis-part-ii-sensitivity-initial-per/
    [8]
    龚佃利, 吴增茂, 傅刚.一次华北强对流风暴的中尺度特征分析.大气科学, 2005, 29(3): 453-464. http://www.cnki.com.cn/Article/CJFDTOTAL-DQXK20050300D.htm
    [9]
    杨帅, 高守亭.三维散度方程及其对暴雨系统的诊断分析.大气科学, 2007, 31(1): 167-179. http://www.cnki.com.cn/Article/CJFDTOTAL-DQXK200701016.htm
    [10]
    Gao S T, Li X, Tao W, et al. A convective vorticity vector associated with tropical convection: A two-dimensional cloud-resolving modeling study. J Geophys Res, 2004, 109: D14106, doi: 10. 1029/2004 JD004807.
    [11]
    Gao S T, Li X, Tao W, et al. Convective and moist vorticity vectors associated with tropical oceanic convection: A three-dimensional cloud-resolving model simulation. J Geophys Res, 2007, 112: D01105, doi:  10.1029/2006JD007179.
    [12]
    赵宇, 高守亭.对流涡度矢量在暴雨诊断分析中的应用研究.大气科学, 2008, 32(3): 444-456. http://www.cnki.com.cn/Article/CJFDTOTAL-QXXB200904004.htm
    [13]
    刘建文, 郭虎.天气分析预报物理量计算基础.北京:气象出版社, 2005.
    [14]
    李跃清, 赵兴柄, 邓波.2010年夏季西南涡加密观测科学试验.高原山地气象研究, 2010, 30(4): 80-84. http://www.cnki.com.cn/Article/CJFDTOTAL-SCCX201204001.htm
    [15]
    何光碧, 屠妮妮, 张利红, 等.2010年7月14—18日四川大暴雨过程区域模式预报性能分析.高原山地气象研究, 2010, 30(4): 8-17. http://www.cnki.com.cn/Article/CJFDTOTAL-SCCX201004003.htm
    [16]
    赵宇, 崔晓鹏.对流涡度矢量和湿涡度矢量在暴雨诊断分析中的应用研究.气象学报, 2009, 67(4): 540-548. doi:  10.11676/qxxb2009.054
    [17]
    陈忠明, 缪强, 闵文彬.一次强烈发展西南低涡的中尺度结构分析.应用气象学报, 1998, 9(3): 273-282. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=19980340&flag=1
    [18]
    吴国雄, 刘还珠.全型垂直涡度倾向方程和倾斜涡度发展.气象学报, 1999, 57(1):2-16. http://www.cnki.com.cn/Article/CJFDTOTAL-QXXB901.000.htm
    [19]
    陈忠明.一次强烈发展西南涡的中尺度结构分析.应用气象学报, 1998, 9(3): 273-282. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=19980340&flag=1
    [20]
    潘旸, 李建, 宇如聪.东移西南低涡空间结构的气候学特征.气候与环境研究, 2011, 16(1): 60-70. http://www.cnki.com.cn/Article/CJFDTOTAL-QHYH201101007.htm
    [21]
    郑庆林, 邢久星.一个六层亚洲有限区域模式及对一次西南涡过程的数值模拟.应用气象学报, 1990, 1(1):12-23. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=19900104&flag=1
  • 加载中
  • -->

Catalog

    Figures(6)

    Article views (3401) PDF downloads(1815) Cited by()
    • Received : 2011-12-26
    • Accepted : 2012-10-18
    • Published : 2012-12-31

    /

    DownLoad:  Full-Size Img  PowerPoint