Zhu Biao, Yang Jun, Lü Weitao, et al. Ground-based visible cloud image classification method based on KNN algorithm. J Appl Meteor Sci, 2012, 23(6): 721-728.
Citation: Zhu Biao, Yang Jun, Lü Weitao, et al. Ground-based visible cloud image classification method based on KNN algorithm. J Appl Meteor Sci, 2012, 23(6): 721-728.

Ground-based Visible Cloud Image Classification Method Based on KNN Algorithm

  • Received Date: 2012-02-14
  • Rev Recd Date: 2012-08-03
  • Publish Date: 2012-12-31
  • Cloud plays an important role in the meteorological research, and it is one of the most important factors of earth's energy balance and hydrological cycle. In order to actualize the automatic ground-based observation of clouds, automatic classification of cloud image is a difficult problem.A cloud classification scheme which classifies the cloud images into cumulus, stratus and cirrus is discussed. The clear sky is considered as a separate category in the scheme. Three kinds of image features, texture, color and shape are analyzed. The texture features describe the local information of image by using gray information normally, which have the characteristics for translation invariance. The color features consider the color of the image and focus on description of the overall image information, which have the characteristics for translation, rotation and scale invariability. The shape features describe the outline or region feature of the specific objectives and focus on description of single target. By analyzing the cloud image features of four different sky conditions, extraction algorithms are introduced in details. Using gray-level co-occurrence matrix and Tamura texture, color moment, and moment invariants, 21 characteristic parameters are extracted. Because of its high performance in solving complex issues, simplicity of implementation and low computational complexity, the K-Nearest Neighbor (KNN) classification algorithm is selected to process 21 characteristic parameters. 8 different K values and different features combination are used to recognize the 4 types of sky conditions. Classification experiments are conducted using single feature, combination of each two features, and all of these features together. The 7 experimental results demonstrate that the new scheme is feasible. And using texture features, color features and shape features together can get better performance than using these features alone or any two of them combined. When the parameter K is set to 7 and all 21 characteristic parameters are considered, the identification accuracy of cumulus, stratus, cirrus and clear sky are 91.1%, 74.4%, 70.0% and 100.0%, respectively, with the average accuracy up to 83.9%.
  • Fig. 1  Statistical distribution of recognition rate when the texture features are used in conjunction with shape and shape features

    Fig. 2  Typical misclassification

    (a) cumulus are mistaken for stratus, (b) stratus are mistaken for cumulus, (c) cirrus are mistaken for cumulus

    Table  1  Types of cloud image

    分类 积状云 层状云 卷云
    高云 卷积云 卷层云 卷云
    中云 高积云
    (蔽光高积云除外)
    高层云,
    蔽光高积云
    低云 积云,积雨云,
    积云性层积云,堡状层
    积云,荚状层积云
    层云,雨层云,
    透光层积云,
    蔽光层积云
    DownLoad: Download CSV

    Table  2  Average values of characteristic parameters

    特征量 积状云 层状云 卷云 晴空
    Tamura粗糙度 0.8911 0.8697 0.8652 0.6877
    Tamura对比度 0.3967 0.2079 0.2737 0.0941
    Tamura方向度 0.4167 0.3057 0.3776 0.0398
    GLCM对比度 0.1865 0.1535 0.1614 0.1471
    GLCM相关 0.9774 0.9282 0.9617 0.7906
    GLCM能量 0.3464 0.5426 0.4382 0.7296
    GLCM局部平稳 0.9841 0.9869 0.9862 0.9930
    GLCM熵 0.4183 0.5546 0.3698 0.2945
    色调 (一阶分量) 0.5987 0.3735 0.6377 0.6628
    饱和度 (一阶分量) 0.3237 0.1717 0.4548 0.6817
    亮度 (一阶分量) 0.6561 0.7358 0.6617 0.6565
    色调 (二阶分量) 0.2154 0.2841 0.0985 0.0070
    饱和度 (二阶分量) 0.4041 0.1201 0.3183 0.0996
    亮度 (二阶分量) 0.4429 0.2905 0.2790 0.1488
    不变矩1 0.6811 0.6798 0.6990 0.7125
    不变矩2 0.2807 0.3230 0.3148 0.3017
    不变矩3 0.3445 0.2352 0.3579 0.2435
    不变矩4 0.2943 0.2036 0.3063 0.2067
    不变矩5 0.3256 0.2177 0.3106 0.2135
    不变矩6 0.0097 0.0153 0.0096 0.0140
    不变矩7 0.2382 0.1528 0.2355 0.1740
    DownLoad: Download CSV

    Table  3  Confusion matrix using texture features alone when K is set to 5

    天空类型 积状云 层状云 卷云 晴空
    积状云 57.8%(52) 21.1%(19) 21.1%(19) 0.0%(0)
    层状云 7.8%(7) 72.2%(65) 13.3%(12) 6.7%(6)
    卷云 25.6%(23) 22.2%(20) 51.1%(46) 1.1%(1)
    晴空 1.1%(1) 10.0%(9) 1.1%(1) 87.8%(79)
     注:括号内为相应的样本数。
    DownLoad: Download CSV

    Table  4  Confusion matrix using color features alone when K is set to 11

    天空类型 积状云 层状云 卷云 晴空
    积状云 82.2%(74) 5.6%(5) 12.2%(11) 0.0%(0)
    层状云 11.1%(10) 77.8%(70) 10.0%(9) 1.1%(1)
    卷云 24.4%(22) 8.9%(8) 58.9%(53) 7.8%(7)
    晴空 0.0%(0) 0.0%(0) 1.1%(1) 98.9%(89)
     注:括号内为相应的样本数。
    DownLoad: Download CSV

    Table  5  Confusion matrix using shape features alone when K is set to 1

    天空类型 积状云 层状云 卷云 晴空
    积状云 32.2%(29) 28.9%(26) 31.1%(28) 7.8%(7)
    层状云 20.0%(18) 41.1%(37) 18.9%(17) 20.0%(18)
    卷云 26.7%(24) 21.1%(19) 35.6%(32) 16.7%(15)
    晴空 3.3%(3) 15.6%(14) 13.3%(12) 67.8%(61)
     注:括号内为相应的样本数。
    DownLoad: Download CSV

    Table  6  Confusion matrix when the texture features are used in conjunction with color features and K is set to 51

    天空类型 积状云 层状云 卷云 晴空
    积状云 86.7%(78) 6.7%(6) 6.7%(6) 0.0%(0)
    层状云 11.1%(10) 76.7%(69) 11.1%(10) 1.1%(1)
    卷云 23.3%(21) 6.7%(6) 68.9%(62) 1.1%(1)
    晴空 0.0%(0) 0.0%(0) 1.0%(1) 98.9%(89)
     注:括号内为相应的样本数。
    DownLoad: Download CSV

    Table  7  Confusion matrix when the texture features are used in conjunction with shape features and K is set to 31

    天空类型 积状云 层状云 卷云 晴空
    积状云 61.1%(55) 21.1%(19) 17.8%(16) 0.0%(0)
    层状云 8.9%(8) 65.6%(59) 17.8%(16) 7.8%(7)
    卷云 22.2%(20) 18.9%(17) 55.6%(50) 3.3%(3)
    晴空 0.0%(0) 7.8%(7) 2.2%(2) 90.0%(81)
     注:括号内为相应的样本数。
    DownLoad: Download CSV

    Table  8  Confusion matrix when the color features are used in conjunction with shape features and K is set to 31

    天空类型 积状云 层状云 卷云 晴空
    积状云 88.9%(80) 4.4%(4) 6.7%(6) 0.0%(0)
    层状云 12.2%(11) 76.7%(69) 10.0%(9) 1.1%(1)
    卷云 16.7%(15) 11.1%(10) 63.3%(57) 8.9%(7)
    晴空 0.0%(0) 0.0%(0) 6.6%(6) 93.4%(84)
     注:括号内为相应的样本数。
    DownLoad: Download CSV

    Table  9  Confusion matrix when the texture features are used in conjunction with color and shape features and K is set to 7

    天空类型 积状云 层状云 卷云 晴空
    积状云 91.1%(82) 5.6%(5) 3.3%(3) 0.0%(0)
    层状云 12.2%(11) 74.4%(67) 11.1%(10) 2.2%(2)
    卷云 20.0%(18) 7.8%(7) 70.0%(63) 2.2%(2)
    晴空 0.0%(0) 0.0%(0) 0.0%(0) 100.0%(90)
     注:括号内为相应的样本数。
    DownLoad: Download CSV
  • [1]
    Shields J E, Karr M E, Tooman T P, et a1. The Whole Sky Imager—A Year of Progress. Eighth Atmospheric Radiation Measurement (ARM) Science Team Meeting, Tucson, Arizona, 1998.
    [2]
    Long C N, Slater D W, Tooman T. Total Sky Imager Model 880 Status and Testing Results. ARM technical Report ARM TR-006, US Department of Energy, Washington D C, 2001.
    [3]
    吕达仁, 霍娟, 吕曜, 等. 地基全天空成像仪遥感的科学、技术问题和初步试验//童庆禧. 中国遥感——奋进创新20年. 北京: 气象出版社, 2001: 114-120.
    [4]
    Cazorla A, Olmo F J, Alados-Arboledas L. Development of a sky imager for cloud cover assessment. Journal of the Optical Society of America, 2008, 25(1):29-39. doi:  10.1364/JOSAA.25.000029
    [5]
    孙学金, 高太长, 霍东力, 等.基于非制冷红外焦平面阵列的全天空红外测云系统.红外与激光工程, 2008, 37(5): 761-764. http://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ200805006.htm
    [6]
    张阳, 吕伟涛, 马颖, 等. 基于球瓣旋转遮光结构的地基全天空云自动观测系统. 中国专利: 200920277594. 5. 2009.
    [7]
    谭涌波, 陶善昌, 吕伟涛, 等.双站数字摄像测量云高.应用气象学报, 2005, 16(5):629-637. doi:  10.11898/1001-7313.20050509
    [8]
    翁笃鸣, 韩爱梅.我国卫星总云量与地面总云量分布的对比分析.应用气象学报, 1998, 9(1):32-37. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=19980105&flag=1
    [9]
    高太长, 刘磊, 赵世军, 等.全天空测云技术及发展.应用气象学报, 2010, 21(1): 101-109. doi:  10.11898/1001-7313.20100114
    [10]
    杨俊, 吕伟涛, 马颖, 等.基于自适应阈值的地基云自动检测方法.应用气象学报, 2009, 20(6): 713-721. doi:  10.11898/1001-7313.20090609
    [11]
    Yang J, Lu W, Ma Y, et al. An automated cirrus cloud detection method for ground-based cloud image. J Atmos Ocean Technol, 2012, 29:527-537. doi:  10.1175/JTECH-D-11-00002.1
    [12]
    Huo J, Lu D. Cloud determination of all-sky images under low-visibility conditions. J Atmos Ocean Technol, 2009, 26: 2172-2181. doi:  10.1175/2009JTECHA1324.1
    [13]
    杨俊, 吕伟涛, 马颖, 等.基于局部阈值插值的地基云自动检测方法.气象学报, 2010, 68(6): 1007-1017. doi:  10.11676/qxxb2010.095
    [14]
    中国云图.北京:气象出版社, 2004.
    [15]
    Peura M, Visa A, Kostamo P. A New Approach to Land-based Cloud Classification. Proceedings of the Thirteenth International Conference on Pattern Recognition (ICPR'96), Vienna, Austria, 1996: 143-147.
    [16]
    Buch J K A, Sun C H. Cloud Classification Using Whole-sky Imager Data. 9th Symposium on Meteorology Observations and Instruments, Charlotte, North Carolina, 1995:353-358.
    [17]
    Singh M, Glennen M. Automated ground-based cloud recognition. Pattern Anal Applic, 2005(8): 258-271. doi:  10.1007/s10044-005-0007-5
    [18]
    孙学金, 刘磊, 高太长, 等.基于模糊纹理光谱的全天空红外图像云分类.应用气象学报, 2009, 20(2): 157-163. doi:  10.11898/1001-7313.20090204
    [19]
    Calbó J, Sabburg J. Feature extraction from whole-sky ground-based images for cloud-type recognition. J Atmos Ocean Technol, 2008, 25: 3-14. doi:  10.1175/2007JTECHA959.1
    [20]
    Heinle A, Macke A, Srivastav A. Automatic cloud classification of whole sky images. Atmospheric Measurement Techniques Discussions, 2010, 3: 269-299. doi:  10.5194/amtd-3-269-2010
    [21]
    孙君顶, 马媛媛.纹理特征研究综述.计算机系统应用, 2010, 19(6): 245-250. http://www.cnki.com.cn/Article/CJFDTOTAL-XTYY201006059.htm
    [22]
    Haralick R M, Dinstein I, Shanmugam K. Texture Features for Image Classification. IEEE Transactions on Systems, Man and Cybernetics, 1973: 610-621.
    [23]
    Tamura H, Mori S, Yamawaki T. Texture Features Corresponding to Visual Perception. IEEE Transactions on Systems, Man and Cybernetics, 1978: 460-473.
    [24]
    Stricker M, Orengo M. Similarity of Color Images. SPIE Storage and Retrieval for Image and Video Databases Ⅲ, 1995:381-392.
    [25]
    Hu M K. Visual Pattern Recognition by Moment Invariants. IEEE Trans on Information Theory, 1962: 170-179.
    [26]
    冯伟兴, 唐墨, 贺波, 等. Visual C++数字图像处理模式识别技术详解.北京:机械工业出版社, 2010.
  • 加载中
  • -->

Catalog

    Figures(2)  / Tables(9)

    Article views (3123) PDF downloads(1697) Cited by()
    • Received : 2012-02-14
    • Accepted : 2012-08-03
    • Published : 2012-12-31

    /

    DownLoad:  Full-Size Img  PowerPoint