分类 | 积状云 | 层状云 | 卷云 |
高云 | 卷积云 | 卷层云 | 卷云 |
中云 | 高积云 (蔽光高积云除外) |
高层云, 蔽光高积云 |
|
低云 | 积云,积雨云, 积云性层积云,堡状层 积云,荚状层积云 |
层云,雨层云, 透光层积云, 蔽光层积云 |
Citation: | Zhu Biao, Yang Jun, Lü Weitao, et al. Ground-based visible cloud image classification method based on KNN algorithm. J Appl Meteor Sci, 2012, 23(6): 721-728. |
Table 1 Types of cloud image
分类 | 积状云 | 层状云 | 卷云 |
高云 | 卷积云 | 卷层云 | 卷云 |
中云 | 高积云 (蔽光高积云除外) |
高层云, 蔽光高积云 |
|
低云 | 积云,积雨云, 积云性层积云,堡状层 积云,荚状层积云 |
层云,雨层云, 透光层积云, 蔽光层积云 |
Table 2 Average values of characteristic parameters
特征量 | 积状云 | 层状云 | 卷云 | 晴空 |
Tamura粗糙度 | 0.8911 | 0.8697 | 0.8652 | 0.6877 |
Tamura对比度 | 0.3967 | 0.2079 | 0.2737 | 0.0941 |
Tamura方向度 | 0.4167 | 0.3057 | 0.3776 | 0.0398 |
GLCM对比度 | 0.1865 | 0.1535 | 0.1614 | 0.1471 |
GLCM相关 | 0.9774 | 0.9282 | 0.9617 | 0.7906 |
GLCM能量 | 0.3464 | 0.5426 | 0.4382 | 0.7296 |
GLCM局部平稳 | 0.9841 | 0.9869 | 0.9862 | 0.9930 |
GLCM熵 | 0.4183 | 0.5546 | 0.3698 | 0.2945 |
色调 (一阶分量) | 0.5987 | 0.3735 | 0.6377 | 0.6628 |
饱和度 (一阶分量) | 0.3237 | 0.1717 | 0.4548 | 0.6817 |
亮度 (一阶分量) | 0.6561 | 0.7358 | 0.6617 | 0.6565 |
色调 (二阶分量) | 0.2154 | 0.2841 | 0.0985 | 0.0070 |
饱和度 (二阶分量) | 0.4041 | 0.1201 | 0.3183 | 0.0996 |
亮度 (二阶分量) | 0.4429 | 0.2905 | 0.2790 | 0.1488 |
不变矩1 | 0.6811 | 0.6798 | 0.6990 | 0.7125 |
不变矩2 | 0.2807 | 0.3230 | 0.3148 | 0.3017 |
不变矩3 | 0.3445 | 0.2352 | 0.3579 | 0.2435 |
不变矩4 | 0.2943 | 0.2036 | 0.3063 | 0.2067 |
不变矩5 | 0.3256 | 0.2177 | 0.3106 | 0.2135 |
不变矩6 | 0.0097 | 0.0153 | 0.0096 | 0.0140 |
不变矩7 | 0.2382 | 0.1528 | 0.2355 | 0.1740 |
Table 3 Confusion matrix using texture features alone when K is set to 5
天空类型 | 积状云 | 层状云 | 卷云 | 晴空 |
积状云 | 57.8%(52) | 21.1%(19) | 21.1%(19) | 0.0%(0) |
层状云 | 7.8%(7) | 72.2%(65) | 13.3%(12) | 6.7%(6) |
卷云 | 25.6%(23) | 22.2%(20) | 51.1%(46) | 1.1%(1) |
晴空 | 1.1%(1) | 10.0%(9) | 1.1%(1) | 87.8%(79) |
注:括号内为相应的样本数。 |
Table 4 Confusion matrix using color features alone when K is set to 11
天空类型 | 积状云 | 层状云 | 卷云 | 晴空 |
积状云 | 82.2%(74) | 5.6%(5) | 12.2%(11) | 0.0%(0) |
层状云 | 11.1%(10) | 77.8%(70) | 10.0%(9) | 1.1%(1) |
卷云 | 24.4%(22) | 8.9%(8) | 58.9%(53) | 7.8%(7) |
晴空 | 0.0%(0) | 0.0%(0) | 1.1%(1) | 98.9%(89) |
注:括号内为相应的样本数。 |
Table 5 Confusion matrix using shape features alone when K is set to 1
天空类型 | 积状云 | 层状云 | 卷云 | 晴空 |
积状云 | 32.2%(29) | 28.9%(26) | 31.1%(28) | 7.8%(7) |
层状云 | 20.0%(18) | 41.1%(37) | 18.9%(17) | 20.0%(18) |
卷云 | 26.7%(24) | 21.1%(19) | 35.6%(32) | 16.7%(15) |
晴空 | 3.3%(3) | 15.6%(14) | 13.3%(12) | 67.8%(61) |
注:括号内为相应的样本数。 |
Table 6 Confusion matrix when the texture features are used in conjunction with color features and K is set to 51
天空类型 | 积状云 | 层状云 | 卷云 | 晴空 |
积状云 | 86.7%(78) | 6.7%(6) | 6.7%(6) | 0.0%(0) |
层状云 | 11.1%(10) | 76.7%(69) | 11.1%(10) | 1.1%(1) |
卷云 | 23.3%(21) | 6.7%(6) | 68.9%(62) | 1.1%(1) |
晴空 | 0.0%(0) | 0.0%(0) | 1.0%(1) | 98.9%(89) |
注:括号内为相应的样本数。 |
Table 7 Confusion matrix when the texture features are used in conjunction with shape features and K is set to 31
天空类型 | 积状云 | 层状云 | 卷云 | 晴空 |
积状云 | 61.1%(55) | 21.1%(19) | 17.8%(16) | 0.0%(0) |
层状云 | 8.9%(8) | 65.6%(59) | 17.8%(16) | 7.8%(7) |
卷云 | 22.2%(20) | 18.9%(17) | 55.6%(50) | 3.3%(3) |
晴空 | 0.0%(0) | 7.8%(7) | 2.2%(2) | 90.0%(81) |
注:括号内为相应的样本数。 |
Table 8 Confusion matrix when the color features are used in conjunction with shape features and K is set to 31
天空类型 | 积状云 | 层状云 | 卷云 | 晴空 |
积状云 | 88.9%(80) | 4.4%(4) | 6.7%(6) | 0.0%(0) |
层状云 | 12.2%(11) | 76.7%(69) | 10.0%(9) | 1.1%(1) |
卷云 | 16.7%(15) | 11.1%(10) | 63.3%(57) | 8.9%(7) |
晴空 | 0.0%(0) | 0.0%(0) | 6.6%(6) | 93.4%(84) |
注:括号内为相应的样本数。 |
Table 9 Confusion matrix when the texture features are used in conjunction with color and shape features and K is set to 7
天空类型 | 积状云 | 层状云 | 卷云 | 晴空 |
积状云 | 91.1%(82) | 5.6%(5) | 3.3%(3) | 0.0%(0) |
层状云 | 12.2%(11) | 74.4%(67) | 11.1%(10) | 2.2%(2) |
卷云 | 20.0%(18) | 7.8%(7) | 70.0%(63) | 2.2%(2) |
晴空 | 0.0%(0) | 0.0%(0) | 0.0%(0) | 100.0%(90) |
注:括号内为相应的样本数。 |
[1] |
Shields J E, Karr M E, Tooman T P, et a1. The Whole Sky Imager—A Year of Progress. Eighth Atmospheric Radiation Measurement (ARM) Science Team Meeting, Tucson, Arizona, 1998.
|
[2] |
Long C N, Slater D W, Tooman T. Total Sky Imager Model 880 Status and Testing Results. ARM technical Report ARM TR-006, US Department of Energy, Washington D C, 2001.
|
[3] |
吕达仁, 霍娟, 吕曜, 等. 地基全天空成像仪遥感的科学、技术问题和初步试验//童庆禧. 中国遥感——奋进创新20年. 北京: 气象出版社, 2001: 114-120.
|
[4] |
Cazorla A, Olmo F J, Alados-Arboledas L. Development of a sky imager for cloud cover assessment. Journal of the Optical Society of America, 2008, 25(1):29-39. doi: 10.1364/JOSAA.25.000029
|
[5] |
孙学金, 高太长, 霍东力, 等.基于非制冷红外焦平面阵列的全天空红外测云系统.红外与激光工程, 2008, 37(5): 761-764. http://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ200805006.htm
|
[6] |
张阳, 吕伟涛, 马颖, 等. 基于球瓣旋转遮光结构的地基全天空云自动观测系统. 中国专利: 200920277594. 5. 2009.
|
[7] |
谭涌波, 陶善昌, 吕伟涛, 等.双站数字摄像测量云高.应用气象学报, 2005, 16(5):629-637. doi: 10.11898/1001-7313.20050509
|
[8] |
翁笃鸣, 韩爱梅.我国卫星总云量与地面总云量分布的对比分析.应用气象学报, 1998, 9(1):32-37. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=19980105&flag=1
|
[9] |
高太长, 刘磊, 赵世军, 等.全天空测云技术及发展.应用气象学报, 2010, 21(1): 101-109. doi: 10.11898/1001-7313.20100114
|
[10] |
杨俊, 吕伟涛, 马颖, 等.基于自适应阈值的地基云自动检测方法.应用气象学报, 2009, 20(6): 713-721. doi: 10.11898/1001-7313.20090609
|
[11] |
Yang J, Lu W, Ma Y, et al. An automated cirrus cloud detection method for ground-based cloud image. J Atmos Ocean Technol, 2012, 29:527-537. doi: 10.1175/JTECH-D-11-00002.1
|
[12] |
Huo J, Lu D. Cloud determination of all-sky images under low-visibility conditions. J Atmos Ocean Technol, 2009, 26: 2172-2181. doi: 10.1175/2009JTECHA1324.1
|
[13] |
杨俊, 吕伟涛, 马颖, 等.基于局部阈值插值的地基云自动检测方法.气象学报, 2010, 68(6): 1007-1017. doi: 10.11676/qxxb2010.095
|
[14] |
中国云图.北京:气象出版社, 2004.
|
[15] |
Peura M, Visa A, Kostamo P. A New Approach to Land-based Cloud Classification. Proceedings of the Thirteenth International Conference on Pattern Recognition (ICPR'96), Vienna, Austria, 1996: 143-147.
|
[16] |
Buch J K A, Sun C H. Cloud Classification Using Whole-sky Imager Data. 9th Symposium on Meteorology Observations and Instruments, Charlotte, North Carolina, 1995:353-358.
|
[17] |
Singh M, Glennen M. Automated ground-based cloud recognition. Pattern Anal Applic, 2005(8): 258-271. doi: 10.1007/s10044-005-0007-5
|
[18] |
孙学金, 刘磊, 高太长, 等.基于模糊纹理光谱的全天空红外图像云分类.应用气象学报, 2009, 20(2): 157-163. doi: 10.11898/1001-7313.20090204
|
[19] |
Calbó J, Sabburg J. Feature extraction from whole-sky ground-based images for cloud-type recognition. J Atmos Ocean Technol, 2008, 25: 3-14. doi: 10.1175/2007JTECHA959.1
|
[20] |
Heinle A, Macke A, Srivastav A. Automatic cloud classification of whole sky images. Atmospheric Measurement Techniques Discussions, 2010, 3: 269-299. doi: 10.5194/amtd-3-269-2010
|
[21] |
孙君顶, 马媛媛.纹理特征研究综述.计算机系统应用, 2010, 19(6): 245-250. http://www.cnki.com.cn/Article/CJFDTOTAL-XTYY201006059.htm
|
[22] |
Haralick R M, Dinstein I, Shanmugam K. Texture Features for Image Classification. IEEE Transactions on Systems, Man and Cybernetics, 1973: 610-621.
|
[23] |
Tamura H, Mori S, Yamawaki T. Texture Features Corresponding to Visual Perception. IEEE Transactions on Systems, Man and Cybernetics, 1978: 460-473.
|
[24] |
Stricker M, Orengo M. Similarity of Color Images. SPIE Storage and Retrieval for Image and Video Databases Ⅲ, 1995:381-392.
|
[25] |
Hu M K. Visual Pattern Recognition by Moment Invariants. IEEE Trans on Information Theory, 1962: 170-179.
|
[26] |
冯伟兴, 唐墨, 贺波, 等. Visual C++数字图像处理模式识别技术详解.北京:机械工业出版社, 2010.
|