Wang Bingzhong, Shen Yanbo. Atmospheric vapor content over china and its climatological evaluation method. J Appl Meteor Sci, 2012, 23(6): 763-768.
Citation: Wang Bingzhong, Shen Yanbo. Atmospheric vapor content over china and its climatological evaluation method. J Appl Meteor Sci, 2012, 23(6): 763-768.

Atmospheric Vapor Content over China and Its Climatological Evaluation Method

  • Received Date: 2012-04-13
  • Rev Recd Date: 2012-10-10
  • Publish Date: 2012-12-01
  • Water vapor content in atmosphere is important for the calculation of surface solar radiation, so it is a necessary parameter. At the same time, water vapor is a kind of climate resources which plays an important role in climatology. In order to evaluate water vapor properly, the integrated water vapor of each station is calculated based on the aerological climate standard data of the whole 124 aerological meteorological stations in China from 1971 to 2000. The distribution of annual value indicates that water vapor content in China increases with latitude except Tibetan Plateau. Using the data from China Surface Climate Standard Monthly Database (1971—2000), the surface vapor pressure is revised by corresponding surface air pressure, and then a consistent or monthly empirical formula which can be used throughout the country is obtained. Root mean square error (RMSE) of fitting value from the empirical formula and observational value is 0.25 cm. The affection of polynomial power on fitting value is discussed in depth and it can be seen that the high power polynomial which makes good fitting correlation doesn't mean the lowest RMSE. The optimal fitting formula of revised surface vapor pressure (x) by surface air pressure and integrated water vapor content (y) is: y=0.185x+0.093. The greatest advantage of this formula is that it can be used all over the country, no matter highland or lowland, in the north or in the south. Therefore, it can be considered much more close to the practical situation.
  • Fig. 1  Distribution of annual integrated atmospheric vapor content over China (unit:cm)

    Fig. 1  Distribution of annual integrated atmospheric vapor content over China (unit:cm)

    Fig. 1  Distribution of annual integrated atmospheric vapor content over China (unit:cm)

    Fig. 2  The different fitting equations of annual integrated water vapor content for all stations over China in April

    Fig. 2  The different fitting equations of annual integrated water vapor content for all stations over China in April

    Fig. 2  The different fitting equations of annual integrated water vapor content for all stations over China in April

    Fig. 3  The consistent fitting equation of annual integrated water vapor content for all stations over China

    Fig. 3  The consistent fitting equation of annual integrated water vapor content for all stations over China

    Fig. 3  The consistent fitting equation of annual integrated water vapor content for all stations over China

    Fig. 4  Grade distribution of root mean square error of water vapor content

    Fig. 4  Grade distribution of root mean square error of water vapor content

    Fig. 4  Grade distribution of root mean square error of water vapor content

    Table  1  Integrated water vapor content over part of stations in China (unit:cm)

    站名 1月 2月 3月 4月 5月 6月 7月 8月 9月 10月 11月 12月
    北京 0.36 0.42 0.64 1.00 1.72 1.72 4.24 3.94 2.37 1.35 0.75 0.46
    太原 0.38 0.43 0.62 0.89 1.39 1.39 3.41 3.30 2.12 1.24 0.72 0.47
    海拉尔 0.24 0.27 0.36 0.59 0.92 0.92 2.63 2.34 1.36 0.71 0.42 0.30
    呼和浩特 0.31 0.33 0.42 0.60 0.95 0.95 2.53 2.41 1.47 0.89 0.53 0.36
    锡林浩特 0.26 0.30 0.38 0.53 0.89 0.89 2.44 2.21 1.28 0.73 0.45 0.32
    沈阳 0.34 0.38 0.56 0.95 1.57 1.57 4.10 3.65 2.10 1.18 0.68 0.44
    长春 0.30 0.33 0.47 0.81 1.33 1.33 3.63 3.22 1.84 1.00 0.57 0.38
    嫩江 0.23 0.26 0.37 0.67 1.08 1.08 3.18 2.75 1.60 0.78 0.41 0.28
    哈尔滨 0.27 0.31 0.41 0.72 1.23 1.23 3.48 3.04 1.76 0.90 0.50 0.34
    上海 1.05 1.20 1.55 2.10 2.84 2.84 5.48 5.08 3.87 2.46 1.65 1.12
    南京 0.94 1.07 1.45 2.00 2.71 2.71 5.34 5.14 3.64 2.38 1.51 1.02
    杭州 1.17 1.33 1.83 2.40 3.14 3.14 5.47 5.37 4.01 2.651.701.17
    福州1.892.192.783.444.364.365.515.494.773.562.521.91
    厦门2.122.503.013.764.674.675.435.484.923.752.782.13
    赣州1.782.132.783.594.514.515.425.454.693.482.281.68
    南昌1.421.652.272.993.873.875.695.524.292.931.861.35
    济南0.510.570.811.211.871.874.484.152.561.550.940.61
    青岛0.560.630.871.271.891.894.544.262.581.621.020.66
    郑州0.650.771.091.592.202.204.764.503.071.841.120.74
    武汉1.181.351.862.513.293.295.685.383.952.671.691.23
    长沙1.611.872.453.214.084.085.785.684.533.292.131.61
    广州2.272.813.524.475.375.375.855.975.354.122.912.25
    汕头2.412.833.354.195.135.135.715.855.334.303.232.50
    东沙岛3.083.323.654.194.874.875.155.405.004.583.763.22
    南宁2.352.713.354.325.305.305.955.925.214.243.112.33
    海口2.863.333.964.865.705.705.866.015.584.833.752.99
    重庆1.501.652.082.813.713.715.234.934.323.252.281.68
    成都1.331.491.912.583.383.385.184.954.133.052.091.50
    贵阳1.341.481.812.433.183.184.083.913.382.681.901.38
    昆明1.031.081.241.642.412.413.393.272.932.311.591.13
    那曲0.130.140.170.280.520.521.151.130.920.440.210.15
    拉萨0.170.190.260.470.830.831.731.761.440.690.310.20
    定日0.130.140.190.290.480.481.301.330.950.360.190.14
    西安0.750.871.221.752.422.424.414.303.232.101.290.85
    兰州0.420.460.650.901.351.352.592.572.021.260.690.48
    格尔木0.240.220.280.350.560.561.191.060.750.420.280.26
    西宁0.300.330.460.691.111.112.112.031.560.920.510.37
    玉树0.220.250.330.500.830.831.541.471.240.700.340.23
    银川0.390.420.570.741.141.142.672.651.791.040.650.47
    乌鲁木齐0.460.490.650.861.161.161.981.691.260.940.710.56
    马公2.242.583.193.604.354.354.924.994.623.612.912.28
    台东2.843.123.484.145.015.015.295.625.164.723.873.11
    香港2.212.753.304.084.944.945.325.454.994.042.902.19
    DownLoad: Download CSV

    Table  1  Integrated water vapor content over part of stations in China (unit:cm)

    站名 1月 2月 3月 4月 5月 6月 7月 8月 9月 10月 11月 12月
    北京 0.36 0.42 0.64 1.00 1.72 1.72 4.24 3.94 2.37 1.35 0.75 0.46
    太原 0.38 0.43 0.62 0.89 1.39 1.39 3.41 3.30 2.12 1.24 0.72 0.47
    海拉尔 0.24 0.27 0.36 0.59 0.92 0.92 2.63 2.34 1.36 0.71 0.42 0.30
    呼和浩特 0.31 0.33 0.42 0.60 0.95 0.95 2.53 2.41 1.47 0.89 0.53 0.36
    锡林浩特 0.26 0.30 0.38 0.53 0.89 0.89 2.44 2.21 1.28 0.73 0.45 0.32
    沈阳 0.34 0.38 0.56 0.95 1.57 1.57 4.10 3.65 2.10 1.18 0.68 0.44
    长春 0.30 0.33 0.47 0.81 1.33 1.33 3.63 3.22 1.84 1.00 0.57 0.38
    嫩江 0.23 0.26 0.37 0.67 1.08 1.08 3.18 2.75 1.60 0.78 0.41 0.28
    哈尔滨 0.27 0.31 0.41 0.72 1.23 1.23 3.48 3.04 1.76 0.90 0.50 0.34
    上海 1.05 1.20 1.55 2.10 2.84 2.84 5.48 5.08 3.87 2.46 1.65 1.12
    南京 0.94 1.07 1.45 2.00 2.71 2.71 5.34 5.14 3.64 2.38 1.51 1.02
    杭州 1.17 1.33 1.83 2.40 3.14 3.14 5.47 5.37 4.01 2.651.701.17
    福州1.892.192.783.444.364.365.515.494.773.562.521.91
    厦门2.122.503.013.764.674.675.435.484.923.752.782.13
    赣州1.782.132.783.594.514.515.425.454.693.482.281.68
    南昌1.421.652.272.993.873.875.695.524.292.931.861.35
    济南0.510.570.811.211.871.874.484.152.561.550.940.61
    青岛0.560.630.871.271.891.894.544.262.581.621.020.66
    郑州0.650.771.091.592.202.204.764.503.071.841.120.74
    武汉1.181.351.862.513.293.295.685.383.952.671.691.23
    长沙1.611.872.453.214.084.085.785.684.533.292.131.61
    广州2.272.813.524.475.375.375.855.975.354.122.912.25
    汕头2.412.833.354.195.135.135.715.855.334.303.232.50
    东沙岛3.083.323.654.194.874.875.155.405.004.583.763.22
    南宁2.352.713.354.325.305.305.955.925.214.243.112.33
    海口2.863.333.964.865.705.705.866.015.584.833.752.99
    重庆1.501.652.082.813.713.715.234.934.323.252.281.68
    成都1.331.491.912.583.383.385.184.954.133.052.091.50
    贵阳1.341.481.812.433.183.184.083.913.382.681.901.38
    昆明1.031.081.241.642.412.413.393.272.932.311.591.13
    那曲0.130.140.170.280.520.521.151.130.920.440.210.15
    拉萨0.170.190.260.470.830.831.731.761.440.690.310.20
    定日0.130.140.190.290.480.481.301.330.950.360.190.14
    西安0.750.871.221.752.422.424.414.303.232.101.290.85
    兰州0.420.460.650.901.351.352.592.572.021.260.690.48
    格尔木0.240.220.280.350.560.561.191.060.750.420.280.26
    西宁0.300.330.460.691.111.112.112.031.560.920.510.37
    玉树0.220.250.330.500.830.831.541.471.240.700.340.23
    银川0.390.420.570.741.141.142.672.651.791.040.650.47
    乌鲁木齐0.460.490.650.861.161.161.981.691.260.940.710.56
    马公2.242.583.193.604.354.354.924.994.623.612.912.28
    台东2.843.123.484.145.015.015.295.625.164.723.873.11
    香港2.212.753.304.084.944.945.325.454.994.042.902.19
    DownLoad: Download CSV

    Table  1  Integrated water vapor content over part of stations in China (unit:cm)

    站名 1月 2月 3月 4月 5月 6月 7月 8月 9月 10月 11月 12月
    北京 0.36 0.42 0.64 1.00 1.72 1.72 4.24 3.94 2.37 1.35 0.75 0.46
    太原 0.38 0.43 0.62 0.89 1.39 1.39 3.41 3.30 2.12 1.24 0.72 0.47
    海拉尔 0.24 0.27 0.36 0.59 0.92 0.92 2.63 2.34 1.36 0.71 0.42 0.30
    呼和浩特 0.31 0.33 0.42 0.60 0.95 0.95 2.53 2.41 1.47 0.89 0.53 0.36
    锡林浩特 0.26 0.30 0.38 0.53 0.89 0.89 2.44 2.21 1.28 0.73 0.45 0.32
    沈阳 0.34 0.38 0.56 0.95 1.57 1.57 4.10 3.65 2.10 1.18 0.68 0.44
    长春 0.30 0.33 0.47 0.81 1.33 1.33 3.63 3.22 1.84 1.00 0.57 0.38
    嫩江 0.23 0.26 0.37 0.67 1.08 1.08 3.18 2.75 1.60 0.78 0.41 0.28
    哈尔滨 0.27 0.31 0.41 0.72 1.23 1.23 3.48 3.04 1.76 0.90 0.50 0.34
    上海 1.05 1.20 1.55 2.10 2.84 2.84 5.48 5.08 3.87 2.46 1.65 1.12
    南京 0.94 1.07 1.45 2.00 2.71 2.71 5.34 5.14 3.64 2.38 1.51 1.02
    杭州 1.17 1.33 1.83 2.40 3.14 3.14 5.47 5.37 4.01 2.651.701.17
    福州1.892.192.783.444.364.365.515.494.773.562.521.91
    厦门2.122.503.013.764.674.675.435.484.923.752.782.13
    赣州1.782.132.783.594.514.515.425.454.693.482.281.68
    南昌1.421.652.272.993.873.875.695.524.292.931.861.35
    济南0.510.570.811.211.871.874.484.152.561.550.940.61
    青岛0.560.630.871.271.891.894.544.262.581.621.020.66
    郑州0.650.771.091.592.202.204.764.503.071.841.120.74
    武汉1.181.351.862.513.293.295.685.383.952.671.691.23
    长沙1.611.872.453.214.084.085.785.684.533.292.131.61
    广州2.272.813.524.475.375.375.855.975.354.122.912.25
    汕头2.412.833.354.195.135.135.715.855.334.303.232.50
    东沙岛3.083.323.654.194.874.875.155.405.004.583.763.22
    南宁2.352.713.354.325.305.305.955.925.214.243.112.33
    海口2.863.333.964.865.705.705.866.015.584.833.752.99
    重庆1.501.652.082.813.713.715.234.934.323.252.281.68
    成都1.331.491.912.583.383.385.184.954.133.052.091.50
    贵阳1.341.481.812.433.183.184.083.913.382.681.901.38
    昆明1.031.081.241.642.412.413.393.272.932.311.591.13
    那曲0.130.140.170.280.520.521.151.130.920.440.210.15
    拉萨0.170.190.260.470.830.831.731.761.440.690.310.20
    定日0.130.140.190.290.480.481.301.330.950.360.190.14
    西安0.750.871.221.752.422.424.414.303.232.101.290.85
    兰州0.420.460.650.901.351.352.592.572.021.260.690.48
    格尔木0.240.220.280.350.560.561.191.060.750.420.280.26
    西宁0.300.330.460.691.111.112.112.031.560.920.510.37
    玉树0.220.250.330.500.830.831.541.471.240.700.340.23
    银川0.390.420.570.741.141.142.672.651.791.040.650.47
    乌鲁木齐0.460.490.650.861.161.161.981.691.260.940.710.56
    马公2.242.583.193.604.354.354.924.994.623.612.912.28
    台东2.843.123.484.145.015.015.295.625.164.723.873.11
    香港2.212.753.304.084.944.945.325.454.994.042.902.19
    DownLoad: Download CSV

    Table  2  Comparison of absolute error from different fitting equations of water vapor content for all of stations over China in April (unit: cm)

    项目 线性式 五次多项式 四次多项式 二次多项式
    标准差0.224.753.810.91
    最大值0.5327.6420.800.12
    最小值-1.01-0.07-0.06-5.00
    DownLoad: Download CSV

    Table  2  Comparison of absolute error from different fitting equations of water vapor content for all of stations over China in April (unit: cm)

    项目 线性式 五次多项式 四次多项式 二次多项式
    标准差0.224.753.810.91
    最大值0.5327.6420.800.12
    最小值-1.01-0.07-0.06-5.00
    DownLoad: Download CSV

    Table  2  Comparison of absolute error from different fitting equations of water vapor content for all of stations over China in April (unit: cm)

    项目 线性式 五次多项式 四次多项式 二次多项式
    标准差0.224.753.810.91
    最大值0.5327.6420.800.12
    最小值-1.01-0.07-0.06-5.00
    DownLoad: Download CSV

    Table  3  The optimal equations from January to December

    月份 优选公式 线性式 二次多项式
    标准差/cm最大值/cm最小值/cm标准差/cm最大值/cm最小值/cm
    1 y=-0.0003x2+0.221x+0.031 0.13 0.43 -0.50 0.11 0.36 -0.30
    2 y=0.192x+0.073 0.09 0.49 -0.90 0.14 0.36 -0.54
    3 y=-0.003x2+0.252x-0.107 0.200.55-1.130.17 0.44 -0.60
    4 y=0.190x+0.0210.22 0.53 -1.01 0.91 0.12 -5.00
    5 y=0.0009x2+0.1655x+0.1373 0.28 0.53 -0.94 0.27 0.52 -1.14
    6 y=0.001x2+0.150x+0.367 0.33 0.66 -0.85 0.33 0.74 -1.00
    7 y=0.172x+0.428 0.31 0.71 -0.94 1.55 6.05 0.99
    8 y=0.0005x2+0.157x+0.4616 0.32 0.66 -0.73 0.32 0.69 -0.73
    9 y=0.182x+0.144 0.33 0.59 -0.99 1.44 5.69 0.55
    10 y=0.0003x2+0.1907x+0.0448 0.24 0.50 -0.70 0.24 0.50 -0.67
    11 y=-0.001x2+0.195x+0.041 0.16 0.38 -0.59 0.15 0.35 -0.50
    12 y=0.170x+0.123 0.12 0.33 -0.50 0.17 0.17 -1.03
    DownLoad: Download CSV

    Table  3  The optimal equations from January to December

    月份 优选公式 线性式 二次多项式
    标准差/cm最大值/cm最小值/cm标准差/cm最大值/cm最小值/cm
    1 y=-0.0003x2+0.221x+0.031 0.13 0.43 -0.50 0.11 0.36 -0.30
    2 y=0.192x+0.073 0.09 0.49 -0.90 0.14 0.36 -0.54
    3 y=-0.003x2+0.252x-0.107 0.200.55-1.130.17 0.44 -0.60
    4 y=0.190x+0.0210.22 0.53 -1.01 0.91 0.12 -5.00
    5 y=0.0009x2+0.1655x+0.1373 0.28 0.53 -0.94 0.27 0.52 -1.14
    6 y=0.001x2+0.150x+0.367 0.33 0.66 -0.85 0.33 0.74 -1.00
    7 y=0.172x+0.428 0.31 0.71 -0.94 1.55 6.05 0.99
    8 y=0.0005x2+0.157x+0.4616 0.32 0.66 -0.73 0.32 0.69 -0.73
    9 y=0.182x+0.144 0.33 0.59 -0.99 1.44 5.69 0.55
    10 y=0.0003x2+0.1907x+0.0448 0.24 0.50 -0.70 0.24 0.50 -0.67
    11 y=-0.001x2+0.195x+0.041 0.16 0.38 -0.59 0.15 0.35 -0.50
    12 y=0.170x+0.123 0.12 0.33 -0.50 0.17 0.17 -1.03
    DownLoad: Download CSV

    Table  3  The optimal equations from January to December

    月份 优选公式 线性式 二次多项式
    标准差/cm最大值/cm最小值/cm标准差/cm最大值/cm最小值/cm
    1 y=-0.0003x2+0.221x+0.031 0.13 0.43 -0.50 0.11 0.36 -0.30
    2 y=0.192x+0.073 0.09 0.49 -0.90 0.14 0.36 -0.54
    3 y=-0.003x2+0.252x-0.107 0.200.55-1.130.17 0.44 -0.60
    4 y=0.190x+0.0210.22 0.53 -1.01 0.91 0.12 -5.00
    5 y=0.0009x2+0.1655x+0.1373 0.28 0.53 -0.94 0.27 0.52 -1.14
    6 y=0.001x2+0.150x+0.367 0.33 0.66 -0.85 0.33 0.74 -1.00
    7 y=0.172x+0.428 0.31 0.71 -0.94 1.55 6.05 0.99
    8 y=0.0005x2+0.157x+0.4616 0.32 0.66 -0.73 0.32 0.69 -0.73
    9 y=0.182x+0.144 0.33 0.59 -0.99 1.44 5.69 0.55
    10 y=0.0003x2+0.1907x+0.0448 0.24 0.50 -0.70 0.24 0.50 -0.67
    11 y=-0.001x2+0.195x+0.041 0.16 0.38 -0.59 0.15 0.35 -0.50
    12 y=0.170x+0.123 0.12 0.33 -0.50 0.17 0.17 -1.03
    DownLoad: Download CSV
  • [1]
    邹进上, 刘惠兰.中国大陆上空的水汽含量.地理学报, 1981, 36(4):377-391. http://www.cnki.com.cn/Article/CJFDTOTAL-DLXB196202002.htm
    [2]
    孙治安.我国平均水汽含量的气候计算及其时空分布特征.南京气象学院院报, 1987, 10(1):74-80. http://www.cnki.com.cn/Article/CJFDTOTAL-NJQX198701008.htm
    [3]
    翟盘茂, 周琴芳.中国大气水分气候变化研究.应用气象学报, 1997, 8(3):342-351. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=19970348&flag=1
    [4]
    王炳忠, 刘庚山.我国大陆大气水汽含量的计算.地理学报, 1993, 48(3):244-253. http://www.cnki.com.cn/Article/CJFDTOTAL-DLXB199303005.htm
    [5]
    杨景梅, 邱金桓.我国可降水量同地面水汽压关系的经验表达式.大气科学, 1996, 20(5):620-626. http://www.cnki.com.cn/Article/CJFDTOTAL-DQXK605.013.htm
    [6]
    杨景梅, 邱金桓.用地面湿度参量计算我国整层大气可降水量及有效水汽含量方法的研究.大气科学, 2002:26(1):9-22. http://www.cnki.com.cn/Article/CJFDTOTAL-DQXK200201001.htm
    [7]
    Muhammad Iqbal. An Introduction to Solar Radiation. New York: Academic Press, 1983.
    [8]
    Lott G A. Precipitable Water over the United States, Vol. 1, Monthly Means. NOAA Technical Report NWS 20, 1976.
    [9]
    Reitan C H. Distribution of precipitable water over the continental United States. Bull Amer Meteor Soc, 1960, 41(2):79-87.
    [10]
    Hay J E. Precipitable water over Canada: Ⅱ Distribution. Atmosphere, 1971, 9(14):101-111.
    [11]
    Smith W. Note on the relationship between total precipitable water and surface dew point. J Appl Meteorol, 1976, 5:726-727. http://adsabs.harvard.edu/abs/1966JApMe...5..726S
    [12]
    王炳忠, 申彦波.自然环境条件对我国太阳能资源计算影响的再思考.应用气象学报, 2012, 23(4):505-512. doi:  10.11898/1001-7313.20120415
    [13]
    中华人民共和国国家标准GB/T. 空中水汽资源评估方法 (征求意见稿). [2009-03-20].
    [14]
    WMO. Guide to Meteorological Instruments and Methods of Observation (7-th Edition). 2008.
    [15]
    魏凤英, 曹鸿兴.长期预测的数学模型及其应用.北京:气象出版社, 1990.
  • 加载中
  • -->

Catalog

    Figures(12)  / Tables(9)

    Article views (2930) PDF downloads(1789) Cited by()
    • Received : 2012-04-13
    • Accepted : 2012-10-10
    • Published : 2012-12-01

    /

    DownLoad:  Full-Size Img  PowerPoint