Zhao Junhu, Yang Jie, Feng Guolin, et al. Causes and dynamic-statistical forecast of the summer rainfall anomaly over China in 2011. J Appl Meteor Sci, 2013, 24(1): 43-54.
Citation: Zhao Junhu, Yang Jie, Feng Guolin, et al. Causes and dynamic-statistical forecast of the summer rainfall anomaly over China in 2011. J Appl Meteor Sci, 2013, 24(1): 43-54.

Causes and Dynamic-statistical Forecast of the Summer Rainfall Anomaly over China in 2011

  • Received Date: 2012-03-29
  • Rev Recd Date: 2012-10-16
  • Publish Date: 2013-02-28
  • The large-scale rainfall over China in summer of 2011 is reviewed, the prediction results of dynamic-statistical objective quantitative (DSOQ) and dynamic-statistical diagnostic (DSD) methods are evaluated. Compared to the DSOQ, the anomaly correlation coefficient (ACC) and predictive score (PS) of which are 0.12 and 70, the DSD method has obvious advantage in predicting skill by increasing the ACC and PS to 0.25 and 75, respectively. Taking the middle and lower reaches of the Yangtze (MLRY) as an experiment region, the differences in predictive factors of these two methods are compared and the advantages of DSD method are analyzed. The probable causes of summer rainfall anomaly distribution in 2011 and the relevant circulation anomaly characteristics are also discussed, such as the blocking-high (BH) anomaly in middle-high latitudes and the western Pacific subtropical high (WPSH) anomaly in low latitudes. The results indicate that the abundant rainfall in June over the middle and lower reaches of the Yangtze and the uneven distribution of June-July-August (JJA) rainfall are the direct causes for the southerly rainbelt in the summer of 2011. And this is related to the BH activities, the intra-seasonal oscillations (ISO) of WPSH and the monthly different configurations between them. In June, the atmospheric circulations reveal two trough areas and one ridge area at the middle-high latitudes. The intensity and western boundary of the WPSH are normal, while the latitude of the ridge line is northerly. The southward cold air behind the trough converges with the northward warm wet airflow over MLRY, which causes substantial precipitation in this area. Compared with June, the atmospheric circulations in middle-high latitudes change into the two ridge areas and one trough area in July, the WPSH becomes weaker and its western boundary moves eastward, and the ridge line is more northward. These situations lead to stronger cold air than the warm wet airflow, resulting in drought of the whole areas. In August, the strength of the trough and ridge weaken relative comparing to July, which makes the convergence of the southward cold air and the northward warm wet airflow over East China. The situations above lead to a large amount of precipitation in East China. Besides, the variation of the BH and the ISO of WPSH is affected by the interactions among the East Asian circulation systems (EACS), and the external forcing of sea surface temperature (SST) and snow cover. The interactions and configurations among EACS are key effective factors of summer climate. Thus, by predicting the seasonal and monthly key circulation factors (e.g., BH and WPSH, etc.) to revise the summer precipitation prediction would be a feasible way for the improvements of the dynamic-statistical prediction skill.
  • Fig. 1  Rainfall anomaly percentage over China in summer of 2011

    Fig. 2  Rainfall anomaly percentage over China in summer of 2011 predicted by dynamic-statistical objective quantitative (DSOQ) model (a) and dynamic-statistical diagnostic (DSD) model (b)

    Fig. 3  The distribution of 500 hPa geopotential height (shaded: anomaly; contour: geopotential height; blue solid line: the climate state; unit:gpm)and 850 hPa wind anomalies (vector) over North Hemisphere in 2011

    (a) summer, (b) June, (c) July, (d) August

    Fig. 4  The distribution of SST anomaly in 2011

    (a) previous winter, (b) spring, (c) summer

    Fig. 5  Time-longitude section of daily 500 hPa geopotential height along 50°N in summer of 2011

    Fig. 6  Vertical circulation anomalies averaged over 5°—25°N in Jun (a), Jul (b), Aug (c) of 2011

    (shaded area: vetical velocity, unit: 10-2 Pa/s; unit of zonal wind: m/s; vectors: composite winds)

    Fig. 7  Vertical circulation anomalies averaged over 125°—150°E in Jun (a), Jul (b), Aug (c) of 2011

    (shade areas: vertical velocity, unit: 10-2Pa/s; unit of meridional wind: m/s; vectors: composite winds)

    Fig. 8  200 hPa geopotential height (long broken line, unit: dagpm), upper westerly jet (shaded area, zonal wind speed greater than 30 m/s) and 500 hPa geopotential height (solid line, unit: dagpm) in 2011 and climate state

    (a) Jun 2011, (b) climate state of Jun, (c) Jul 2011, (d) climate state of Jul, (e) Aug 2011, (f) climate state of Aug

    Fig. 9  The possible mechanism of rainfall anomaly over China in 2011

    Table  1  The predictive factors for the middle and lower reaches of the Yangtze in DSOQ

    月份 因子 相关
    系数
    距平相关
    系数
    8 加勒比海SST指数* 0.49 0.34
    1 热带北大西洋SST指数* 0.37 0.22
    10 西半球暖池指数* 0.41 0.22
    7 加勒比海SST指数* 0.57 0.21
    12 热带北大西洋指数* 0.31 0.18
    4 东太平洋副热带高压强度指数** 0.31 0.17
    2 大西洋副热带高压脊线指数** 0.21 0.10
    6 北非大西洋北美
    副热带高压面积指数**
    0.18 0.01
    5 登陆台风指数** -0.03 0.05
    12 飓风活动指数** -0.49 0.06
    注:3—12月因子为上一年因子,1—2月因子为当年因子。**表示因子来自NOAA的40项月气候指数;*表示因子来自国家气候中心气候系统诊断预测室提供的74项月环流特征量资料。下同。
    DownLoad: Download CSV

    Table  2  The predictive factors for the middle and lower reaches of the Yangtze in DSD

    月份 因子 COR ACC
    12 西太平洋副热带
    高压面积指数**
    0.32 0.32
    1 热带北大西洋SST指数* 0.37 0.22
    10 西半球暖池指数* 0.41 0.22
    12 冷空气指数** -0.43 0.26
    12 大西洋几十年涛动指数* 0.43 0.19
    1 El Niño演变指数* 0.35 0.16
    2 亚洲区极涡面积指数** -0.39 0.16
    10 太平洋10年涛动
    (PDO) 指数*
    -0.37 0.13
    9 青藏高原高度场指数** 0.42 0.16
    8 印缅槽指数** 0.42 0.14
    DownLoad: Download CSV

    Table  3  Seasonal and monthly indices of WPSH in summer of 2011

    副高指数 6月 7月 8月 夏季
    距平 标准差 距平 标准差 距平 标准差 距平 标准差
    强度指数 12 21 -31Δ 24 11 26 -4 21
    脊线指数 2Δ 2 2Δ 2 4Δ 4 3Δ 2
    西伸脊点指数 -3 12 16Δ 15 -2 16 3 11
    注:Δ表示达到1倍标准差。
    DownLoad: Download CSV
  • [1]
    黄荣辉, 蔡榕硕, 陈际龙, 等.我国旱涝气候灾害的年代际变化及其与东亚气候系统变化的关系.大气科学, 2006, 30(5):730-742. http://www.cnki.com.cn/Article/CJFDTOTAL-DQXK200605001.htm
    [2]
    张庆云, 陶诗言, 彭京备.我国灾害性天气气候事件成因机理的研究进展.大气科学, 2008, 32(4):815-825. http://www.cnki.com.cn/Article/CJFDTOTAL-DQXK200804009.htm
    [3]
    曹鸿兴.大气运动的自忆方程.中国科学:B辑, 1993, 23(1):104-112. http://www.cnki.com.cn/Article/CJFDTOTAL-JBXK199301014.htm
    [4]
    Wang Bin.Interdecadal changes in El Nio onset in the last four decades.J Climate, 1995, 8:267-285. doi:  10.1175/1520-0442(1995)008<0267:ICIENO>2.0.CO;2
    [5]
    王绍武. 短期气候预测研究的历史及现状//王绍武. 气候预测研究. 北京: 气象出版社, 1996: 1-17.
    [6]
    施能, 陈辉, 屠其璞.1951—1994年我国东部夏季雨型的统计诊断分析方法.南京气象学院学报, 1997, 20(2):181-185. http://www.cnki.com.cn/Article/CJFDTOTAL-NJQX702.006.htm
    [7]
    魏凤英.现代气候统计诊断与预测技术.北京:气象出版社, 1999:260-277. http://www.cnki.com.cn/Article/CJFDTOTAL-SYQY201603027.htm
    [8]
    魏凤英.全国夏季降水区域动态权重集成预报试验.应用气象学报, 1999, 10(4), 401-409. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=19990489&flag=1
    [9]
    施能, 陈辉, 冯俊茹, 等.我国夏季雨型的前期异常特征及预报方法的初步研究.应用气象学报, 1999, 10(增刊):70-77. http://kns.cnki.net/KCMS/detail/detail.aspx?dbcode=CJFQ&dbname=CJFD9899&filename=YYQX9S1.008&v=MTQyOTRjcUY1NE9mZ2c1emhBVTRqaDRPWDZUckgwM2ViT1RSYitmWWVkcUZ5cmxVZz09UERUYWRycmJIOC9NcjQ=
    [10]
    陈兴芳, 赵振国.中国汛期降水预测研究及应用.北京:气象出版社, 2000:65-99. http://www.cnki.com.cn/Article/CJFDTOTAL-SYQY201603027.htm
    [11]
    封国林, 曹鸿兴, 魏凤英, 等.长江三角洲汛期预报模式的研究及其初步应用.气象学报, 2001, 59(2):206-212. doi:  10.11676/qxxb2001.021
    [12]
    李维京, 张培群, 李清泉, 等.动力气候模式预测系统业务化及其应用.应用气象学报, 2005, 16(增刊):1-11. http://kns.cnki.net/KCMS/detail/detail.aspx?dbcode=CJFQ&dbname=CJFD2005&filename=YYQX2005S1000&v=MTgxMjJUYWRyRzRIdFN2cm85RlpJUjhlWDFMdXhZUzdEaDFUM3FUcldNMUZyQ1VSTDJmWXVacEZ5emxVYjNMUEQ=
    [13]
    魏凤英.长江中下游夏季降水异常变化与若干强迫因子的关系.大气科学, 2006, 30(2):202-211. http://www.cnki.com.cn/Article/CJFDTOTAL-DQXK200602002.htm
    [14]
    Fan Ke, Wang Huijun, Choi Young-Jean.A physically-based statistical forecast model for the middle-lower reaches of the Yangtze river valley summer rainfall.Chin Sci Bull, 2008, 53(4):602-609. doi:  10.1007/s11434-008-0083-1
    [15]
    张人禾, 武炳义, 赵平, 等.中国东部夏季气候20世纪80年代后期的年代际转型及其可能成因.气象学报, 2008, 66(5):697-706. doi:  10.11676/qxxb2008.064
    [16]
    周秀骥, 赵平, 刘舸.近千年亚洲-太平洋涛动指数与东亚夏季风变化.科学通报, 2009, 54:3144-3146. http://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200920026.htm
    [17]
    郑志海, 封国林, 丑纪范, 等.数值预报中自由度的压缩及误差相似性规律.应用气象学报, 2010, 21(2):139-148. doi:  10.11898/1001-7313.20100202
    [18]
    魏凤英.我国短期气候预测的物理基础及其预测思路.应用气象学报, 2011, 22(1):1-11. doi:  10.11898/1001-7313.20110101
    [19]
    丑纪范.为什么要动力-统计相结合?——兼论如何结合.高原气象, 1986, 5(4):367-372. http://www.cnki.com.cn/Article/CJFDTOTAL-GYQX198604008.htm
    [20]
    陈丽娟, 李维京, 张培群, 等.降尺度技术在月降水预报中的应用.应用气象学报, 2003, 14(6):648-655. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20030682&flag=1
    [21]
    魏凤英, 黄嘉佑.我国东部夏季降水量统计将尺度的可预测性研究.热带气象学报, 2010, 26(4):483-488. http://www.cnki.com.cn/Article/CJFDTOTAL-RDQX201004013.htm
    [22]
    郭彦, 李建平.一种分离时间尺度的统计降尺度模型的建立和应用——以华北汛期降水为例.大气科学, 2012, 36(2):385-396. doi:  10.3878/j.issn.1006-9895.2011.11045
    [23]
    丑纪范.天气数值预报中使用过去资料的问题.中国科学, 1974(6):635-644. http://www.cnki.com.cn/Article/CJFDTOTAL-QXXB195803002.htm
    [24]
    丑纪范.短期气候预测的现状、问题与出路 (一).新疆气象, 2003, 26(1):1-4. http://www.cnki.com.cn/Article/CJFDTOTAL-XJQX200301000.htm
    [25]
    邱崇践, 丑纪范.天气预报的相似-动力方法.大气科学, 1989, 13(1):22-28. http://cpfd.cnki.com.cn/Article/CPFDTOTAL-ZGQX201307001046.htm
    [26]
    黄建平, 王绍武.相似-动力模式的季节预报试验.中国科学:B辑, 1991, 35(2):216-224. http://www.cnki.com.cn/Article/CJFDTOTAL-JBXK199102013.htm
    [27]
    任宏利, 丑纪范.统计-动力相结合的相似误差订正法.气象学报, 2005, 63(6):988-993. doi:  10.11676/qxxb2005.094
    [28]
    郑志海, 任宏利, 黄建平.基于季节气候可预报分量的相似误差订正方法和数值试验.物理学报, 2008, 58(10):7359-7367. http://www.cnki.com.cn/Article/CJFDTOTAL-WLXB200910115.htm
    [29]
    王启光, 封国林, 郑志海, 等.长江中下游汛期降水优化多因子组合客观定量化预测研究.大气科学, 2011, 35(2):287-297. http://www.cnki.com.cn/Article/CJFDTOTAL-DQXK201102009.htm
    [30]
    杨杰, 王启光, 支蓉, 等.动态最优多因子组合的华北汛期降水模式误差估计及预报.物理学报, 2011, 60(2):837-849. http://www.cnki.com.cn/Article/CJFDTOTAL-WLXB201102125.htm
    [31]
    Xiong Kaiguo, Feng Guolin, Huang Jianping, et al.Analogue-dynamical prediction of monsoon precipitation in Northeast China based on changeable configuration of optimal multi-predictor.Acta Meteor Sinica, 2011, 25(3):316-326. doi:  10.1007/s13351-011-0307-1
    [32]
    杨杰, 赵俊虎, 郑志海, 等.华北汛期降水多因子相似订正方案与预报试验.大气科学, 2012, 36(1):11-22. http://www.cnki.com.cn/Article/CJFDTOTAL-DQXK201201002.htm
    [33]
    Xie P, Arkin P A. Global precipitation: A 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bull Amer Meteor Soc, 1997, 78:2539-2558. doi:  10.1175/1520-0477(1997)078<2539:GPAYMA>2.0.CO;2
    [34]
    Kistler R, Kalnay E, Collins W, et al. The NCEP/NCAR 50-year reanalysis: Monthly means CD-ROM and documentation. Bull Amer Meteor Soc, 2001, 82(2):247-268. doi:  10.1175/1520-0477(2001)082<0247:TNNYRM>2.3.CO;2
    [35]
    Smith T M, Reynolds R W. Extended reconstruction of global sea surface temperatures based on COADS data (1854-1997). J Climate, 2003, 16:1495-1510. https://www.ncdc.noaa.gov/sites/default/files/attachments/Extended-Reconstruction-Global-Sea-Surface-Temps-Based-COADS-1854-1997.pdf
    [36]
    赵振国.中国夏季旱涝及环境场.北京:气象出版社, 1999:1-9. http://www.cnki.com.cn/Article/CJFDTOTAL-SYQY201603027.htm
    [37]
    赵俊虎, 封国林, 张世轩, 等.近48年中国的季节变化与极端温度事件的联系.物理学报, 2011, 60(9):99205 doi:  10.7498/aps.60.099205.
    [38]
    陈桂英, 赵振国.短期气候预测评估方法和业务初估.应用气象学报, 1998, 9(2):178-185. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=19980225&flag=1
    [39]
    赵俊虎, 封国林, 王启光, 等.2010年我国夏季降水异常气候成因分析及预测.大气科学, 2011, 35(6):1069-1078. http://www.cnki.com.cn/Article/CJFDTOTAL-DQXK201106008.htm
    [40]
    Wu Z, Wang B, Li J, et al.An empirical seasonal prediction model of the east Asian summer monsoon using ENSO and NAO.J Geophys Res, 2009, 114, D18120, doi: 10.1029/2009JD011733.
    [41]
    叶笃正, 黄荣辉.长江黄河流域旱涝规律和成因研究.济南:山东科技出版社, 1996. http://www.cnki.com.cn/Article/CJFDTOTAL-SYQY201603027.htm
    [42]
    张庆云, 陶诗言.夏季西太平洋副热带高压异常时的东亚大气环流.大气科学, 2003, 27(3):369-380. http://www.cnki.com.cn/Article/CJFDTOTAL-DQXK200303006.htm
    [43]
    肖子牛, 孙绩华, 李崇银.El Niño期间印度洋海温异常对亚洲气候的影响.大气科学, 2000, 24(4):461-469. http://www.cnki.com.cn/Article/CJFDTOTAL-DQXK200004002.htm
    [44]
    毛恒青, 李月安, 姚学祥, 等.1998年夏季东北亚阻塞高压异常的大尺度环流特征及成因初探.南京气象学院学报, 2011, 24(2):221-227. http://www.cnki.com.cn/Article/CJFDTOTAL-NJQX200102010.htm
    [45]
    王亚非, 宋永加.1991年夏季东亚阻塞高压形成的诊断分析.气象学报, 1998, 56(2):212-224. doi:  10.11676/qxxb1998.020
    [46]
    Wang Y.Effects of blocking anticyclones in Eurasia in the rainy season (Meiyu/Baiu Season).J Meteoro Soc Japan, 1992, 70(5):929-951. doi:  10.2151/jmsj1965.70.5_929
    [47]
    赵振国.厄尔尼诺现象对北半球大气环流和中国降水的影响.大气科学, 1996, 20(4):422-428. http://www.cnki.com.cn/Article/CJFDTOTAL-DQXK604.005.htm
    [48]
    应明, 孙淑清.西太平洋副热带高压对热带海温异常响应的研究.大气科学, 2000, 24(2):193-206. http://www.cnki.com.cn/Article/CJFDTOTAL-DQXK200002007.htm
    [49]
    蒋国荣, 沙之钰, 蔡剑平.印度洋和北太平洋海温与夏季西太平洋副热带高压长期变动的关系.海洋预报, 1991, 8(1):16-24. doi:  10.11737/j.issn.1003-0239.1991.01.003
    [50]
    穆松宁, 周广庆.冬季欧亚大陆北部新增雪盖面积变化与中国夏季气候异常的关系.大气科学, 2010, 34(1):213-226. http://www.cnki.com.cn/Article/CJFDTOTAL-DQXK201001020.htm
  • 加载中
  • -->

Catalog

    Figures(9)  / Tables(3)

    Article views (3282) PDF downloads(1585) Cited by()
    • Received : 2012-03-29
    • Accepted : 2012-10-16
    • Published : 2013-02-28

    /

    DownLoad:  Full-Size Img  PowerPoint