成分 | 年排放总量/Tg |
DMS | 14.13 |
SO2 | 57.0 |
BC | 7.7 |
POC | 35.2 |
注:MAM3模块考虑了一部分SO2直接以硫酸盐颗粒物的 形式排放进入大气,比例设为2.5%,并考虑了一些排放 情况的高度分布[7];而MOZART中2005年排放源没有 上述处理。 |
Citation: | Li Xin, Liu Yu. Assessment of two aerosol modules of CAM5. J Appl Meteor Sci, 2013, 24(1): 75-86. |
Fig. 4 The same as in Fig 2, but for black carbon aerosol(two dashed lines are 1:3 or 3:1)
Fig. 5 The same as in Fig. 3, but for black carbon aerosol
Fig. 6 The same as in Fig. 2, but for organic carbon aerosol (POC and SOC)
(two dashed lines are 1:3 or 3:1)
Fig. 7 The same as in Fig. 3, but for organic matter (OM)
Table 1 Emission used in two modules
成分 | 年排放总量/Tg |
DMS | 14.13 |
SO2 | 57.0 |
BC | 7.7 |
POC | 35.2 |
注:MAM3模块考虑了一部分SO2直接以硫酸盐颗粒物的 形式排放进入大气,比例设为2.5%,并考虑了一些排放 情况的高度分布[7];而MOZART中2005年排放源没有 上述处理。 |
Table 2 Annual budget for sulfate aerosol
模式 | 大气总 量/Tg |
源 | 汇 | 生命 期/d |
||||||||
年排放 总量/Tg |
直接排 放/Tg |
SO2气相 氧化/Tg |
SO2液相 氧化/Tg |
年清除 总量/Tg |
干沉降 /Tg |
干清除 率/d-1 |
湿沉降 /Tg |
湿清除率 /d-1 |
||||
MAM3 | 0.43 | 36.7 | 1.40 | 12.3 | 23.0 | 36.7 | 7.74 | 0.030 | 32.0 | 0.20 | 4.3 | |
MOZART | 0.45 | 46.0 | 0.00 | 9.4 | 36.6 | 46.0 | 5.53 | 0.034 | 40.5 | 0.25 | 3.6 | |
AEROCOM | 0.63 | 2.11 | 57.6 | 6.20 | 0.027 | 49.0 | 0.21 | 4.0 | ||||
注:清除率=年清除总量/大气总量/365;生命期=大气总量/年清除总量×365 |
Table 3 Annual budget for black carbon aerosol
模式 | 大气总 量/Tg |
年排放 总量/Tg |
汇 | 生命期 /d |
||||
年清除 总量/Tg |
干沉降 /Tg |
干清除率 /d-1 |
湿沉降 /Tg |
湿清除率 /d-1 |
||||
MAM3 | 0.10 | 7.7 | 7.9 | 1.37 | 0.036 | 6.53 | 0.17 | 4.8 |
MOZART | 0.12 | 7.7 | 7.6 | 1.66 | 0.039 | 5.97 | 0.14 | 5.6 |
AEROCOM | 0.18 | 8.7 | 9.2 | 1.65 | 0.025 | 7.65 | 0.12 | 7.0 |
Table 4 Global budget for primary and secondary organic matter
有机碳 | 模式 | 大气总 量/Tg |
年排放 总量/Tg |
汇 | 生命 期/d |
||||
年清除总量/Tg | 干沉降/Tg | 干清除率/d-1 | 湿沉降/Tg | 湿清除率/d-1 | |||||
一次 | MAM3 | 0.71 | 49.3 | 50.0 | 8.1 | 0.030 | 41.9 | 0.16 | 5.3 |
MOZART | 0.74 | 49.3 | 49.6 | 10.5 | 0.039 | 39.1 | 0.14 | 5.5 | |
LWPD | 1.11 | 49.3 | 49.4 | 10.1 | 0.025 | 39.3 | 0.10 | 8.2 | |
二次 | MAM3 | 1.34 | 102.7 | 102.6 | 12.7 | 0.03 | 89.9 | 0.18 | 4.8 |
MOZART | 0.11 | 9.51 | 9.51 | 1.60 | 0.04 | 7.91 | 0.21 | 4.0 | |
LWPD | 1.26 | 68.6 | 68.5 | 9.8 | 0.02 | 0.21 | 0.13 | 6.7 |
Table 5 Global budget for sea salt and sand dust
气溶胶 | 模式 | 大气 总量/Tg |
年排放 总量/Tg |
汇 | 生命 期/d |
|||
年清除总量/Tg | 湍流清除率/d-1 | 重力清除率/d-1 | 湿清除率/d-1 | |||||
海盐 | MAM3 | 11.2 | 4696 | 4692 | 0.24 | 0.34 | 0.58 | 0.87 |
MOZART | 10.3 | 4728 | 4760 | 0.39 | 0.37 | 0.51 | 0.79 | |
AEROCOM | 6.1 | 6218 | 6206 | 0.63 | 0.71 | 0.81 | 0.36 | |
沙尘 | MAM3 | 22.80 | 3028 | 3028 | 0.023 | 0.209 | 0.132 | 2.8 |
MOZART | 9.08 | 622 | 626 | 0.049 | 0.060 | 0.080 | 5.3 | |
AEROCOM | 15.94 | 1126 | 1261 | 0.068 | 0.054 | 0.062 | 4.6 |
[1] |
张小曳, 张养梅, 曹国良.北京PM1中的化学组成及其控制对策思考.应用气象学报, 2012, 23(3): 257-264. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20120301&flag=1
|
[2] |
颜鹏, 郇宁, 张养梅, 等.北京乡村地区分粒径气溶胶OC及EC分析.应用气象学报, 2012, 23(3): 285-293. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20120304&flag=1
|
[3] |
颜鹏, 刘桂清, 周秀骥, 等.上甸子秋冬季雾霾期间气溶胶光学特性.应用气象学报, 2010, 21(3): 257-265. doi: 10.11898/1001-7313.20100301
|
[4] |
徐晓斌, 刘希文, 林伟立.输送对区域本底站痕量气体浓度的影响.应用气象学报, 2009, 20(6): 657-664. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20090602&flag=1
|
[5] |
黄健, 刘作挺, 黄敏辉.珠江三角洲区域大气输送和扩散的季节特征.应用气象学报, 2010, 21(6): 698-708. doi: 10.11898/1001-7313.20100606
|
[6] |
Wang Z L, Zhang H, Shen X, et al. Modeling study of aerosol indirect effects on global climate with an AGCM. Adv Atmos Sci, 2010, 27(5): 1064-1077. doi: 10.1007/s00376-010-9120-5
|
[7] |
Neale R B, Chen C C, Gettlelman A, et al. Description of the NCAR Community Atmosphere Model (CAM 5.0). NCAR Technical Note, 2010, 486: 1-268. https://www.researchgate.net/publication/224017878_Description_of_the_NCAR_Community_Atmosphere_Model
|
[8] |
Liu X, Wang J. How important is organic aerosol hygroscopicity to aerosol indirect forcing. Environ Res Let, 2010, 5(4), 044010, doi: 10.1088/1748-9326/5/4/044010.
|
[9] |
Meskhidze N, Xu J, Gantt B, et al. Global distribution and climate forcing of marine organic aerosol—Part 1: Model improvements and evaluation. Atmos Chem Phys, 2011, 11: 11689-11705. doi: 10.5194/acp-11-11689-2011
|
[10] |
Liu X H, Easter R C, Ghan S J, et al. Toward a minimal representation of aerosol direct and indirect effects. Geosci Model Dev, 2011, 4: 3485-3598. doi: 10.5194/gmdd-4-3485-2011
|
[11] |
Wang M, Ghan S, Easter R, et al. The multi-scale aerosol-climate Model PNNL-MMF: Model description and evaluation. Geosci Model Dev, 2011, 4: 137-168. http://www.oalib.com/paper/2157044#.WQ--Yfl6-0I
|
[12] |
Martensson E M, Nilsson E D, de Leeuw G, et al. Laboratory simulations and parameterization of the primary marine aerosol production. Journal of Geophysical Research-Atmospheres, 2003, 108 (D9): 4297. doi: 10.1029/2002JD002263/citedby
|
[13] |
Monahan E C, Spiel D E, Davidson K L. Oceanic Whitecaps and Their Role in Air-Sea Exchange Processes. 1986: 167-174.
|
[14] |
Zender C S, Bian H, Newman D. The mineral dust entrainment and deposition (DEAD) model: Description and 1990's dust climatology. J Geophys Res, 2003, 108(D14), 4416, doi: 10.1029/2002JD002775.
|
[15] |
Rasch P J, Barth M C, Kiehl J T, et al. A description of the global sulfur cycle and its controlling processes in the national center for atmospheric research community climate model, version 3. J Geophys Res, 2000, 105: 1367-1385. doi: 10.1029/1999JD900777
|
[16] |
Barth M C, Rasch P J, Kiehl J T, et al. Sulfur chemistry in the national center for atmospheric research community climate model: Description, evaluation, features and sensitivity to aqueous chemistry. J Geophys Res, 2000, 105: 1387-1415. doi: 10.1029/1999JD900773
|
[17] |
Zhang L M, Gong S L, Padro J, et al. A size-segregated particle dry deposition scheme for an atmospheric aerosol module. Atmospheric Environment, 2001, 35(3): 549-560. doi: 10.1016/S1352-2310(00)00326-5
|
[18] |
Collins W D, Rasch P J, Boville B A, et al., Description of the NCAR Community Atmosphere Model (CAM3). NCAR Technical Note, 2004, 464: 1-214. https://www.mendeley.com/research-papers/description-ncar-community-atmosphere-model-cam-30/
|
[19] |
Emmons L K, Walters S, Hess P G, et al. Description and evaluation of the model for ozone and related chemical tracers, version 4 (MOZART-4). Geosci Model Dev, 2010, 3: 43-67. doi: 10.5194/gmd-3-43-2010
|
[20] |
Riahi K, Gruebler A, Nakicenovic N. Scenarios of long-term socio-economic and environmental development under climate stabilization. Technological Forecasting and Social Change, 2007, 74: 887-935. doi: 10.1016/j.techfore.2006.05.026
|
[21] |
Dentener F, Kinne S, Bond T, et al. Emissions of primary aerosol and precursor gases in the years 2000 and 1750 prescribed data-sets for AeroCom. Atmos Chem Phys, 2006, 6: 4321-4344. doi: 10.5194/acp-6-4321-2006
|