Huang Yong, Qin Danyu. Cumulus merging in the massive mudslide of Zhouqu using meteorological satellite data. J Appl Meteor Sci, 2013, 24(1): 87-98.
Citation: Huang Yong, Qin Danyu. Cumulus merging in the massive mudslide of Zhouqu using meteorological satellite data. J Appl Meteor Sci, 2013, 24(1): 87-98.

Cumulus Merging in the Massive Mudslide of Zhouqu Using Meteorological Satellite Data

  • Received Date: 2012-04-18
  • Rev Recd Date: 2012-09-19
  • Publish Date: 2013-02-28
  • Heavy rainfall occurs abruptly at Zhouqu, Gansu Province from 7 August to 8 August of 2010, causing massive mudslide and brings about huge casualties. As an observational fact, it is clear that a meso-scale convective system, which is produced by several convective cells merging, brings heavy rain in local field and the massive mudslide at Zhouqu. The phenomenon of cumulus merging is analyzed using meteorological satellite data, such as FY-2D/E, NOAA-18 and FY-1D, to find out its impact on heavy rain.As NOAA-18 satellite image shows, there are several cells around the Zhouqu at 0638 UTC 7 August 2010. One and half hours later, cells are merged and forms a meso-scale system. And the meso-scale system is still developing in FY-1D satellite image.From FY-2D/E satellite images, there are five stages of cumulus merging in the whole process. First, the meso-scale convective system comes out due to the merging of multi-cells from 0700 UTC to 0800 UTC. And it is the developing and maintaining period of meso-scale convective system. The cumulus merges in 3 stages. First, a developing system merges with several nearby new generation cells at about 0930 UTC. Then a systems merges between a mature new generation system and the old convective system from 1000 UTC to 1030 UTC, the new and old systems merge from 1130 UTC to 1200 UTC. Finally, two centers of cloud with cold cloud top temperature are merged as the dissipating of convective system after 1300 UTC. As the centers have been merged, the system develops again and the cold cloud areas have increased.As a result of the merging effect, not only a large and complex convective system is produced and becomes more intensity, but also the lifetime of convective system is greatly enhanced with more convective energy.On the other hand, the mechanisms of merging in five stages could be classified as change of inner dynamical structure and collision with outer force. At the building stage of meso-scale convective system, collision with outer force is the main cause of cumulus merging. But with the development and maintain of system, inner changes of dynamical structure, such as pressure gradient force, convergence and up-down circumfluence, are the primary mechanisms for merging.
  • Fig. 1  Synoptic chart at 0000 UTC and 1200 UTC on 7 Aug 2010 (a)500 hPa height (solid line, unit:dagpm) and temperature (dashed line, unit:℃) at 0000 UTC, (b)500 hPa height (solid line, unit: dagpm) and temperature (dashed line, unit:℃) at 1200 UTC, (c)700 hPa wind at 0000 UTC (single curve:trough; arrow:southwestern airflow), (d)700 hPa wind at 1200 UTC (single curve:trough; double curves:shear line)

    Fig. 2  Satellite image of FY-2E with synoptic analysis at 500 hPa on 7 Aug 2010(unit: dagpm)

    Fig. 3  False color combination image on 7 Aug 2010

    Fig. 4  Enhanced IR image at 0700 UTC—1600 UTC on 7 Aug 2010

    Fig. 5  Temporal variety of cloud area and eccentricity

    Fig. 6  Temporal variety of minimum and average TBB with ratio of cold center field in cloud

    Fig. 7  Satellite image with 24 h surface pressure change at 1000 UTC and 1100 UTC on 7 Aug 2010

    (black isolines: 24 h surface pressure change more than 1 hPa; white isolines: 24 h surface pressure change less than-1 hPa)

  • [1]
    付丹红, 郭学良.积云合并在强对流系统形成中的作用.大气科学, 2007, 31(4):635-644. http://www.cnki.com.cn/Article/CJFDTOTAL-DQXK200704007.htm
    [2]
    甄长忠. 78810冰雹过程的分析.大气科学, 1981, 5(4):456-460. http://www.cnki.com.cn/Article/CJFDTOTAL-DQXK198104012.htm
    [3]
    王昂生, 赵小宁, 康玉霞, 等.昔阳地区冰雹云形成过程的一些特征.大气科学, 1980, 4(2):456-460. http://www.cnki.com.cn/Article/CJFDTOTAL-DQXK198002009.htm
    [4]
    顾亚进, 党人庆, 唐洵昌, 等.一次MCS过程的卫星云图和数值模拟分析.气象科学, 2002, 22(2):197-204. http://www.cnki.com.cn/Article/CJFDTOTAL-QXKX200202008.htm
    [5]
    杨金锡, 陈晓红, 王东勇.1991年7月6—7日黄山特大暴雨分析.气象, 1993, 19(1):39-42. doi:  10.7519/j.issn.1000-0526.1993.01.009
    [6]
    王瑾, 蒋建莹, 江吉喜."7·18"济南突发性大暴雨特征.应用气象学报, 2009, 20(3):295-302. doi:  10.11898/1001-7313.20090305
    [7]
    李艳伟, 牛生杰, 姚展予, 等.云合并的初始位置探讨.大气科学, 2009, 33(5):1015-1026. http://cdmd.cnki.com.cn/Article/CDMD-10141-1016033574.htm
    [8]
    胡雯, 黄勇, 汪腊宝.夏季江淮区域对流云合并的基本特征及影响.高原气象, 2010, 29(1):206-213. http://www.cnki.com.cn/Article/CJFDTOTAL-GYQX201001024.htm
    [9]
    黄美元, 徐华英, 吉武胜.积云合并及相互影响的数值模拟研究.中国科学:B辑, 1987, 17(2):214-224. http://www.cnki.com.cn/Article/CJFDTOTAL-JBXK198702012.htm
    [10]
    曲晓波, 张涛, 刘鑫华, 等.舟曲"8.8"特大山洪泥石流灾害气象成因分析.气象, 2010, 36(10):102-105. doi:  10.7519/j.issn.1000-0526.2010.10.017
    [11]
    钤伟妙, 罗亚丽, 张人禾, 等.引发舟曲特大泥石流灾害强降雨过程成因.应用气象学报, 2011, 22(4):385-397. doi:  10.11898/1001-7313.20110401
    [12]
    郑永光, 陈炯, 朱佩君.改进的静止卫星云图软件处理系统.气象, 2007, 33(12):103-109. doi:  10.7519/j.issn.1000-0526.2007.12.016
    [13]
    金明星, 张长江.台风云图伪彩色增强的Berkeley小波变换法.计算机应用, 2010, 30(6):1602-1605. http://www.cnki.com.cn/Article/CJFDTOTAL-JSJY201006050.htm
    [14]
    李修芳, 范蕙君, 燕芳杰, 等.用增强显示云图确定热带气旋强度的方法.应用气象学报, 1993, 4(3):362-369. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=19930361&flag=1
    [15]
    费增坪, 王洪庆, 张焱, 等.基于静止卫星红外云图的MCS自动识别与追踪.应用气象学报, 2011, 22(4):115-122. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20110112&flag=1
    [16]
    Morel C, Senesi S.A climatology of mesoscale con-vective systems over Europe using satellite infrared imagery. Ⅰ: Methodology. Q J R Meteorol Soc, 2002, 128:1953-1971. doi:  10.1256/003590002320603485
    [17]
    周著华, 白洁, 刘健文, 等, MODIS多光谱云相态识别技术的应用研究.应用气象学报, 2005, 16(5):678-684. doi:  10.11898/1001-7313.20050515
    [18]
    周著华, 白洁, 刘健文, 等.基于EOS/MODIS的台风"浣熊"云顶相态分析.气象科学, 2006, 26(5):494-501. http://www.cnki.com.cn/Article/CJFDTOTAL-QXKX200605003.htm
    [19]
    Smith R B, Evans J P. Orographic Precipitation and Water Vapor Fractionation over the Southern Andes. J Hydrometeorology, 2007, 8:3-18. doi:  10.1175/JHM555.1
    [20]
    Lensky I M, Rosenfeld D. Clouds-aerosols-precipitation satel-lite analysis tool (CAPSAT). Atmos Chem Phys Discuss, 2008, 8(24):6739-6753. http://www.oalib.com/paper/2706409#.WRA4nPl6-0I
    [21]
    陈英英, 唐仁茂, 周毓荃, 等.用三通道合成彩色图像进行云的分类解释判读.应用气象学报, 2011, 22(6):691-697. doi:  10.11898/1001-7313.20110606
    [22]
    Orville H D, Kuo Y H, Farley R D, et al. Numerical simulation of cloud interactions. J Rech Atmos, 1980, 14:499-516. http://adsabs.harvard.edu/abs/2009AGUFM.A13J0426A
    [23]
    Takahashi T, Yamaguchi N, Kawano T. Videosonde observation of torrential rain during Baiu season. J Meteor Soc Japan, 2001, 58(3):205-228. http://www.sciencedirect.com/science/article/pii/S0169809501000837
  • 加载中
  • -->

Catalog

    Figures(7)

    Article views (3192) PDF downloads(1283) Cited by()
    • Received : 2012-04-18
    • Accepted : 2012-09-19
    • Published : 2013-02-28

    /

    DownLoad:  Full-Size Img  PowerPoint