Liu Yujue, Li Jun, Hu Fei, et al. A new MCP method of predicting long-term wind speed with height error revision. J Appl Meteor Sci, 2013, 24(1): 109-116.
Citation: Liu Yujue, Li Jun, Hu Fei, et al. A new MCP method of predicting long-term wind speed with height error revision. J Appl Meteor Sci, 2013, 24(1): 109-116.

A New MCP Method of Predicting Long-term Wind Speed with Height Error Revision

  • Received Date: 2012-02-16
  • Rev Recd Date: 2012-08-06
  • Publish Date: 2013-02-28
  • In recent years, modern wind turbine generators have grown rapidly and wind power plants have been established, delivering clean and inexhaustible energy. Therefore, the need for effective methods to evaluate wind power. Based on the fact that wind field has some degree of spatial correlation, measure-correlate-predict (MCP) algorithms can use concurrent data from target sites and a nearby reference site to predict the wind resource at target sites for wind power development. During last 15 years, over a dozen of MCP methods have been established, which differ in terms of overall approach, model definition, use of direction sectors, length of data. There are linear regression model, composite of wind speeds at two-site model, vector regression method, composite of standard deviations of two datasets and so on.But MCP algorithms mentioned above can only predict wind speed of target site with the same altitude. If the target site is higher or lower than the reference site too much, the result will be unreliable. So a new MCP method with height error revision is proposed based on data of two wind measurements, including six-layer wind data in one year. The fitted equations of Weibull parameters k and c as the function of height have been derived. By means of fitted equations, the relationship between winds of high and low altitude can be formulated. So, a method for error reduction is presented.At last, a set of performance comparison are carried out. The coefficient of correlation, the mean speed, the wind distribution and the correct annual energy production are selected as metrics at the target site, and a sample wind turbine power curve is analyzed. The mean and standard deviation of those estimates are used to characterize results. Results indicate that the new MCP method with height error revision work much better than previous ones.
  • Fig. 1  Flowchart of MCP method

    Fig. 2  Curve of parameter k of Weibull distribution varying with height

    Fig. 3  Curve of parameter c of Weibull distribution varying with height

    Fig. 4  Comparative flowchart of two methods

    Fig. 5  Scatter plotand time series of 10 m wind speed ofreference tower and that of 100 m, 10 m of target tower

    Fig. 6  Plots of wind speed time series for Method A and Method B with observations

    Table  1  The geographic information of two anemometer towers

    塔号 纬度 经度 海拔高度/m 塔高/m
    1 44°07.455′N 116°17.812′E 1110 100
    2 44°09.825′N 116°20.803′E 1107 70
    DownLoad: Download CSV

    Table  2  The estimated value of c and k for wind speed of six layers from May to November in 2009

    月份 4 m高度 10 m高度 30 m高度 50 m高度 70 m高度 100 m高度
    c k c k c k c k c k c k
    5 7.26 2.25 8.24 2.33 9.44 2.55 10.03 2.65 10.30 2.72 10.84 2.77
    6 6.69 1.85 7.64 1.94 8.82 2.00 9.43 2.03 9.80 2.08 10.28 2.07
    7 5.18 2.15 5.94 2.03 6.87 2.45 7.33 2.49 7.61 2.52 7.95 2.50
    8 4.85 2.27 5.58 2.38 6.54 2.43 7.00 2.32 7.21 2.32 7.48 2.29
    9 6.11 1.90 6.94 1.99 8.03 2.07 8.55 2.01 8.85 2.15 9.34 2.17
    10 5.33 2.06 6.08 2.15 7.18 2.23 7.64 2.26 7.09 2.29 8.35 2.28
    11 7.16 2.60 7.86 2.80 9.54 3.00 9.87 3.11 9.90 3.21 10.59 3.17
    12 7.28 2.98 7.98 3.20 9.88 3.42 10.12 3.50 9.77 3.53 13.87 1.67
    注:5月数据只有21—31日数据。
    DownLoad: Download CSV

    Table  3  The value of α

    时间 2009-05 2009-06 2009-07 2009-08 2009-09 2009-10 2009-11 2009-12
    α拟合值 0.123 0.133 0.133 0.136 0.130 0.139 0.123 0.163
    DownLoad: Download CSV

    Table  4  Summary of results for Method A and Method B

    方案 R m1 m2 m3
    平均值 标准差 平均值 标准差 平均值 标准差
    A 0.5740 0.7652 0.2941 0.2171 0.5493 0.6594 0.4007
    B 0.8713 0.9926 0.0077 0.0288 0.0016 1.0013 0.0004
    DownLoad: Download CSV
  • [1]
    Derrick A. Development of the Measure-correlate-predict Strategy for Site Assessment. Proc BWEA, 1992: 259-265. https://www.mendeley.com/research-papers/development-measurecorrelatepredict-strategy-site-assesment/
    [2]
    Derrick A. Development of the Measure-correlate-predict Strategy for Site Assessment. Proc EWEC, 1993: 311-315. https://www.mendeley.com/research-papers/development-measurecorrelatepredict-strategy-site-assesment/
    [3]
    Nielsen M, Landberg L, Mortensen N, et al. Application of Measure-correlate-predict Approach for Wind Resource Measurement. Proc EWEA, 2001: 12-16. https://www.mysciencework.com/publication/show/f0b240ff6a30b8eedb4a144825f6881a
    [4]
    Riedel V, Strack M, Waldl H P. Robust Approximation of Functional Relationships Between Meteorological Data: Alternative Measure-correlate-predict Algorithms. Proc EWEA, 2001:17-18.
    [5]
    Draper N R, Smith H. Applied Regression Analysis. New York: John Wiley and Sons Inc, 1966.
    [6]
    Woods J, Watson S. A new matrix method of predicting long-term wind roses with MCP. Journal of Wind Engineering and Industrial Aerodynamics, 1997, 66(2):85-94. doi:  10.1016/S0167-6105(97)00009-3
    [7]
    Mortimer A A. A New Correlation Prediction Method for Potential Windfarm Sites. Proc BWEC, 1994: 20-27. https://www.researchgate.net/publication/284603935_A_new_correlationprediction_method_for_potential_wind_farm_sites
    [8]
    杨萍, 刘伟东, 仲跻芹, 等.北京地区自动气象站气温观测资料的质量评估.应用气象学报, 2011, 22(6): 706-715. doi:  10.11898/1001-7313.20110608
    [9]
    牟聿强, 王秀丽, 别朝红, 等.风电场风速随机性及容量系数分析.电力系统保护与控制, 2009, 37(1):65-70. doi:  10.7667/j.issn.1674-3415.2009.01.013
    [10]
    Justus G. Nationwide assessment of potential output from wind-powered generators. J Applied Meteor, 1976, 15(7): 673-678. doi:  10.1175/1520-0450(1976)015<0673:NAOPOF>2.0.CO;2
    [11]
    Dorvlo A. Estimating wind speed distribution. Energy Conversion and Management, 2002, 43(17):2311-2318. doi:  10.1016/S0196-8904(01)00182-0
    [12]
    Lun I Y F, Lam J C. A study of Weibull parameters using long-term wind observations. Renewable Energy, 2000, 20(2): 145-153. doi:  10.1016/S0960-1481(99)00103-2
    [13]
    Seguro V J, Lambert T W. Modern estimation of the parameters of the Weibull wind speed distribution for wind energy analysis. Journal of Wind Engineering and Industrial Aerodynamics, 2000, 85(1): 75-84. doi:  10.1016/S0167-6105(99)00122-1
    [14]
    Genc A. Estimation of wind power potential using Weibull distribution. Energy Sources, 2005, 27(9):809-822. doi:  10.1080/00908310490450647
    [15]
    徐宝清, 田德, 王海宽, 等.风速的Weibull分布参数确定方法研究.农业工程学报, 2007, 23(10):31-33. doi:  10.3321/j.issn:1002-6819.2007.10.006
    [16]
    杨维军, 王斌.二参数Weibull分布函数对近地层风速的拟合及应用.应用气象学报, 1999, 10(1): 119-123. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=19990148&flag=1
    [17]
    徐大海, 朱蓉.大气平流扩散的箱格预报模型与污染潜势指数预报.应用气象学报, 2000, 1(4):1-7. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20000101&flag=1
    [18]
    Tony Burton. 风能技术. 武鑫, 谷海涛, 李海东, 等译. 北京: 科学出版社, 2007.
    [19]
    王国复, 徐枫, 吴增祥.气象元数据标准与信息发布技术研究.应用气象学报, 2005, 16(1):114-121. doi:  10.11898/1001-7313.20050115
    [20]
    许小峰, 胡欣, 王卫丹, 等.国内大气科学发展状况及优先领域分析.应用气象学报, 2006, 17(6):657-664. doi:  10.11898/1001-7313.20060603
  • 加载中
  • -->

Catalog

    Figures(6)  / Tables(4)

    Article views (3957) PDF downloads(3365) Cited by()
    • Received : 2012-02-16
    • Accepted : 2012-08-06
    • Published : 2013-02-28

    /

    DownLoad:  Full-Size Img  PowerPoint