反射率因子区间/dBZ | 所归级别/dBZ |
(-5, 0] | 0 |
(0, 5] | 5 |
(5, 10] | 10 |
(10, 15] | 15 |
(15, 20] | 20 |
(20, 25] | 25 |
(25, 30] | 30 |
(30, 35] | 35 |
(35, 40] | 40 |
(40, 45] | 45 |
(45, 50] | 50 |
(50, 55] | 55 |
(55, 60] | 60 |
(60, 65] | 65 |
(65, 70] | 70 |
(70, +∞) | -999 |
Citation: | Zheng Jiafeng, Zhang Jie, Zhu Keyun, et al. Automatic identification and alert of gust fronts. J Appl Meteor Sci, 2013, 24(1): 117-125. |
Table 1 The reflectivity classification table
反射率因子区间/dBZ | 所归级别/dBZ |
(-5, 0] | 0 |
(0, 5] | 5 |
(5, 10] | 10 |
(10, 15] | 15 |
(15, 20] | 20 |
(20, 25] | 25 |
(25, 30] | 30 |
(30, 35] | 35 |
(35, 40] | 40 |
(40, 45] | 45 |
(45, 50] | 50 |
(50, 55] | 55 |
(55, 60] | 60 |
(60, 65] | 65 |
(65, 70] | 70 |
(70, +∞) | -999 |
Table 2 The number of gust front processes, samples and identification
雷达站点 | 样本数 | 成功识别 样本数 |
未能识别 样本数 |
误识别 样本数 |
商丘 | 33 | 26 | 7 | 0 |
郑州 | 25 | 17 | 8 | 0 |
阜阳 | 40 | 24 | 16 | 0 |
Table 3 ICS, RH, RM and RFA of total samples
总样本数 | ICS | RH | RM | RFA |
98 | 0.684 | 0.684 | 0.316 | 0 |
[1] |
Simpson J E A. Comparison between laboratory and atmospheric density currents. Quart J Roy Meteor Soc, 1969, 95: 578-765. doi: 10.1002/qj.49709540609/full
|
[2] |
Wakimoto R M.The life cycle of thunderstorm gust front as viewed with Doppler Radar and Rawinsonde Data. Mon Wea Rev, 1982, 110: 1060-1082. doi: 10.1175/1520-0493(1982)110<1060:TLCOTG>2.0.CO;2
|
[3] |
Wilson J W, Schreiber W E. Initiation of convective storms at radar observer boundary layer convergence lines. Mon Wea Rev, 1986, 114: 2516-2536. doi: 10.1175/1520-0493(1986)114<2516:IOCSAR>2.0.CO;2
|
[4] |
葛润生.阵风锋的雷达探测和研究.气象科学研究院院刊, 1986, 1(2):113-121. http://www.cnki.com.cn/Article/CJFDTOTAL-YYQX198602000.htm
|
[5] |
陈明轩, 愈小鼎, 谭晓光, 等.对流天气临近预报系统技术的发展与研究进展.应用气象学报, 2004, 15(6):754-766. http://www.cnki.com.cn/Article/CJFDTotal-YYQX200406015.htm
|
[6] |
陈明轩, 高峰, 孔荣, 等.自动临近预报系统及其在北京奥运期间的应用.应用气象学报, 2010, 21(4):394-404. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20100402&flag=1
|
[7] |
王彦, 于莉莉, 李艳伟, 等.边界层辐合线对强对流系统形成和发展的作用.应用气象学报, 2011, 22(6):724-731. doi: 10.11898/1001-7313.20110610
|
[8] |
黄旋旋, 何彩芬, 徐迪峰, 等.阵风锋过程形成机制探讨.气象, 2008, 34(7):380-387. http://www.cnki.com.cn/Article/CJFDTOTAL-QXXX200807005.htm
|
[9] |
毕旭, 刘慧敏, 赵榆飞.陕北系列阵风锋天气过程分析.陕西气象, 2008(2):23-26. http://www.cnki.com.cn/Article/CJFDTOTAL-SXQI200802008.htm
|
[10] |
刘勇, 王楠, 刘黎平.陕西两次阵风锋的多普勒雷达和自动气象站资料分析.高原气象, 2007, 26(2):380-387. http://www.cnki.com.cn/Article/CJFDTOTAL-GYQX200702020.htm
|
[11] |
何彩芬, 姚秀萍, 胡春蕾, 等.一次台风前部龙卷的多普勒天气雷达分析.应用气象学报, 2006, 17(3):370-375. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20060363&flag=1
|
[12] |
姚建群, 戴建华, 姚祖庆.一次强飑线的成因及维持和加强机制分析.应用气象学报, 2005, 16(6):746-753. doi: 10.11898/1001-7313.20050615
|
[13] |
Uyeda H, D Zrnic S. Automatic detection of gust front. J Atmos Oceanic Technol, 1985, 3: 36-50. https://www.researchgate.net/publication/235056850_Automatic_Detection_of_Gust_Fronts
|
[14] |
Delanoy R L, Troxel S W. The Machine Intelligent Gust Front Algorithm. MIT Lincoln Laboratory Project Report ATC-196, 1993. https://www.ll.mit.edu/mission/aviation/publications/publication-files/atc-reports/Delanoy_1993_ATC-196_WW-15318.pdf
|
[15] |
Troxel S W, DelanoyR L, Pmorgan J P, et al. Machine Intelligent Gust Front Algorithm for the Terminal Doppler Weather Radar (TDWR) and Integrated Terminal Weather System (ITWS). AMS Workshop on Wind Shear and Wind Shear Alert Systems, 1996: 70-79. http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.89.4239
|
[16] |
宗蓉. 多普勒天气雷达的阵风锋识别方法探索. 南京: 南京信息工程大学, 2009.
|
[17] |
李劲. 利用多普勒天气雷达自动识别阵风锋方法研究. 南京: 南京信息工程大学, 2010.
|
[18] |
陈刚. 阵风锋的检测与识别. 西安: 西安电子科技大学, 2009.
|
[19] |
王楠, 刘黎平, 徐宝祥, 等.利用多普勒雷达资料识别低空风切变和辐合线方法研究.应用气象学报, 2007, 18(3):314-320. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20070353&flag=1
|