Zheng Jiafeng, Zhang Jie, Zhu Keyun, et al. Automatic identification and alert of gust fronts. J Appl Meteor Sci, 2013, 24(1): 117-125.
Citation: Zheng Jiafeng, Zhang Jie, Zhu Keyun, et al. Automatic identification and alert of gust fronts. J Appl Meteor Sci, 2013, 24(1): 117-125.

Automatic Identification and Alert of Gust Fronts

  • Received Date: 2012-04-15
  • Rev Recd Date: 2012-11-13
  • Publish Date: 2013-02-28
  • Gust fronts often cause serious ground gale and strong wind shear. Therefore, the short-term forecast, nowcasting and civil aviation department pay high attention to the research of gust fronts. Based on the echo characteristics of gust fronts in reflectivity field and velocity field of Doppler radar, an identification algorithm for gust fronts is designed. In the velocity field, the convergence line is identified by finding the consistent decreasing radial velocity and inspected by using a convergence parameter threshold, a grads threshold and a flux threshold. In the reflectivity field, the reflectivity data are classified into different levels. Then, the narrowband is identified by an algorithm called bilateral grads, which is designed by fully using the narrowband geometrical characteristic, the interval between narrowband and echo matrix. The bilateral grads algorithm can effectively filter out the wide range of precipitation echoes and reserve the narrowband in reflectivity image. Meanwhile, in order to filter out the remainder noise, length calculated and image thinning technique are used during above processes. According to the consistency of narrowband and the convergence line in the space, the gust front can be identified. The achievement of alert function uses an image flicker and some physical quantities output to represent the strength of the gust front. Finally, 98 volume-scanning data from 3 radar stations and the automatic weather station data and ICS are used to evaluate the identification effect. The bilateral grads algorithm can effectively filter out the big range precipitation echo and keep the narrowband signal, it has an important relationship with the distance between the narrowband and maternal storm echo. Combined with the composite reflectivity to contrast all-layer reflectivity, the narrowband or the stronger reflectivity doesn't exist at the higher elevation, therefore, the algorithm simply handles the low elevation, which can improve the identification efficiency. The convergence line can be identified effectively by this method, and at the same time, it can also identify the low-level wind shear. The identification rate evaluated by ICS from 98 volume-scanning data reaches 68.4%, indicating that the identification algorithm has the capacity of identifying gust fronts.
  • Fig. 1  Convergence segment search across the front line of Shangqiu radar at 1415 UTC 3 June 2009(elevation:0.5°; azimuth:160°)

    Fig. 2  Bilateral grads schematic diagram

    Fig. 3  Identification image of gust front of Zhengzhou radar on 3 June 2009

    Fig. 4  Identification image of gust front of Shangqiu radar on 3 June 2009

    Fig. 5  Identification image of gust front of Fuyang radar on 3 June 2009

    Table  1  The reflectivity classification table

    反射率因子区间/dBZ 所归级别/dBZ
    (-5, 0] 0
    (0, 5] 5
    (5, 10] 10
    (10, 15] 15
    (15, 20] 20
    (20, 25] 25
    (25, 30] 30
    (30, 35] 35
    (35, 40] 40
    (40, 45] 45
    (45, 50] 50
    (50, 55] 55
    (55, 60] 60
    (60, 65] 65
    (65, 70] 70
    (70, +∞) -999
    DownLoad: Download CSV

    Table  2  The number of gust front processes, samples and identification

    雷达站点 样本数 成功识别
    样本数
    未能识别
    样本数
    误识别
    样本数
    商丘 33 26 7 0
    郑州 25 17 8 0
    阜阳 40 24 16 0
    DownLoad: Download CSV

    Table  3  ICS, RH, RM and RFA of total samples

    总样本数 ICS RH RM RFA
    98 0.684 0.684 0.316 0
    DownLoad: Download CSV
  • [1]
    Simpson J E A. Comparison between laboratory and atmospheric density currents. Quart J Roy Meteor Soc, 1969, 95: 578-765. doi:  10.1002/qj.49709540609/full
    [2]
    Wakimoto R M.The life cycle of thunderstorm gust front as viewed with Doppler Radar and Rawinsonde Data. Mon Wea Rev, 1982, 110: 1060-1082. doi:  10.1175/1520-0493(1982)110<1060:TLCOTG>2.0.CO;2
    [3]
    Wilson J W, Schreiber W E. Initiation of convective storms at radar observer boundary layer convergence lines. Mon Wea Rev, 1986, 114: 2516-2536. doi:  10.1175/1520-0493(1986)114<2516:IOCSAR>2.0.CO;2
    [4]
    葛润生.阵风锋的雷达探测和研究.气象科学研究院院刊, 1986, 1(2):113-121. http://www.cnki.com.cn/Article/CJFDTOTAL-YYQX198602000.htm
    [5]
    陈明轩, 愈小鼎, 谭晓光, 等.对流天气临近预报系统技术的发展与研究进展.应用气象学报, 2004, 15(6):754-766. http://www.cnki.com.cn/Article/CJFDTotal-YYQX200406015.htm
    [6]
    陈明轩, 高峰, 孔荣, 等.自动临近预报系统及其在北京奥运期间的应用.应用气象学报, 2010, 21(4):394-404. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20100402&flag=1
    [7]
    王彦, 于莉莉, 李艳伟, 等.边界层辐合线对强对流系统形成和发展的作用.应用气象学报, 2011, 22(6):724-731. doi:  10.11898/1001-7313.20110610
    [8]
    黄旋旋, 何彩芬, 徐迪峰, 等.阵风锋过程形成机制探讨.气象, 2008, 34(7):380-387. http://www.cnki.com.cn/Article/CJFDTOTAL-QXXX200807005.htm
    [9]
    毕旭, 刘慧敏, 赵榆飞.陕北系列阵风锋天气过程分析.陕西气象, 2008(2):23-26. http://www.cnki.com.cn/Article/CJFDTOTAL-SXQI200802008.htm
    [10]
    刘勇, 王楠, 刘黎平.陕西两次阵风锋的多普勒雷达和自动气象站资料分析.高原气象, 2007, 26(2):380-387. http://www.cnki.com.cn/Article/CJFDTOTAL-GYQX200702020.htm
    [11]
    何彩芬, 姚秀萍, 胡春蕾, 等.一次台风前部龙卷的多普勒天气雷达分析.应用气象学报, 2006, 17(3):370-375. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20060363&flag=1
    [12]
    姚建群, 戴建华, 姚祖庆.一次强飑线的成因及维持和加强机制分析.应用气象学报, 2005, 16(6):746-753. doi:  10.11898/1001-7313.20050615
    [13]
    Uyeda H, D Zrnic S. Automatic detection of gust front. J Atmos Oceanic Technol, 1985, 3: 36-50. https://www.researchgate.net/publication/235056850_Automatic_Detection_of_Gust_Fronts
    [14]
    Delanoy R L, Troxel S W. The Machine Intelligent Gust Front Algorithm. MIT Lincoln Laboratory Project Report ATC-196, 1993. https://www.ll.mit.edu/mission/aviation/publications/publication-files/atc-reports/Delanoy_1993_ATC-196_WW-15318.pdf
    [15]
    Troxel S W, DelanoyR L, Pmorgan J P, et al. Machine Intelligent Gust Front Algorithm for the Terminal Doppler Weather Radar (TDWR) and Integrated Terminal Weather System (ITWS). AMS Workshop on Wind Shear and Wind Shear Alert Systems, 1996: 70-79. http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.89.4239
    [16]
    宗蓉. 多普勒天气雷达的阵风锋识别方法探索. 南京: 南京信息工程大学, 2009.
    [17]
    李劲. 利用多普勒天气雷达自动识别阵风锋方法研究. 南京: 南京信息工程大学, 2010.
    [18]
    陈刚. 阵风锋的检测与识别. 西安: 西安电子科技大学, 2009.
    [19]
    王楠, 刘黎平, 徐宝祥, 等.利用多普勒雷达资料识别低空风切变和辐合线方法研究.应用气象学报, 2007, 18(3):314-320. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20070353&flag=1
  • 加载中
  • -->

Catalog

    Figures(5)  / Tables(3)

    Article views (4012) PDF downloads(1844) Cited by()
    • Received : 2012-04-15
    • Accepted : 2012-11-13
    • Published : 2013-02-28

    /

    DownLoad:  Full-Size Img  PowerPoint