Wu Naigeng, Lin Liangxun, Zeng Qin, et al. Causal analysis of consecutive torrential rains in Guangdong Province before the onset of South China Sea monsoon. J Appl Meteor Sci, 2013, 24(2): 129-139.
Citation: Wu Naigeng, Lin Liangxun, Zeng Qin, et al. Causal analysis of consecutive torrential rains in Guangdong Province before the onset of South China Sea monsoon. J Appl Meteor Sci, 2013, 24(2): 129-139.

Causal Analysis of Consecutive Torrential Rains in Guangdong Province Before the Onset of South China Sea Monsoon

  • Received Date: 2012-04-22
  • Rev Recd Date: 2012-12-20
  • Publish Date: 2013-04-30
  • Guangdong suffers from consecutive torrential rains before the onset of South China Sea Monsoon (SCSM) in May 2010, which is rarely seen in South China. Based on meteorological observations, regional automatic weather station data and NCEP data, the characteristics of the consecutive torrential rains are analyzed through a comparative analysis of consecutive torrentials and persistent rains. And the possible mechanism of the consecutive torrential rains are analyed with a complete (including dynamic and thermodynamic mechanisms) linear-diagnostic model for the local-meridional circulation.The results show that the blocking high plays an important role in both consectutive torrential rains and persistent rains. The consectcutive torrential rains are associated with the south-eastward propagation of short wave troughs and the blocking high located over Mount Ural, while the persistent torrential rains are associated with the northward movement of the SCSM and the blocking located over central of Asian continent. There are obvious differences among the weather patterns of the three consecutive torrential rains, although the large-scale background circulations are similar. "5.7" torrential rain occurs behind upper-level trough, lower-level shear line and cold front far from the rain belt, which is rarely observed in South China. "5.9" torrential rain is relatively typical since it occurs near the front and in the south of lower-level shear line, but upper-level short-wave trough is not clearly indentified. "5.14" torrential rain featured typical rainfall pattern in South China, heavy rainfall occurs in front of upper-level trough, in the south of low-level shear line and near the front.Numerical quantitative diagnosis shows that the contributors to the local meridional circulation associated with the consecutive torrential rains are mainly latent heating, horizontal temperature advection and westerly momentum transport. Latent heating is the major contributor and provides positive feedback to the torrential rain, while horizontal temperature advection and westerly momentum transport play an important role in triggering consecutive torrential rains (0—1.5 d prior to the torrential rains). The upper-level westly jet is in favor of the rising motion and upper-level divergence of Guangdong through the horizonal westerly momentum transport and vertical air mass adjustment. On the other side, the vertical westerly momentum transport and the upper-level trough provide favorable conditions for the southward moverment of cold air mass, which triggering stronger rising motion over Guangdong and more moisture convergence (latent heat release). Therefore, it is necessary to pay more attention to the evolution of mid-latitude synoptic circulation associated with westerly momentum and horizontal temperature advection in forecasting the consecutive torrential rains before the onset of SCSM.
  • Fig. 1  Distribution of heavy rain processes on 7 May (a), 9 May (b) and 14 May (c) in 2010

    Fig. 2  Area-averaged (22°~24.5°N, 112°~116°E) daily precipitation from 1 May to 17 May in 2010(a) and from 9 Jun to 26 Jun in 2005(b)

    Fig. 3  500 hPa mean geopotential height (unit:dagpm) during the consecutive torrential rains in May 2010(a) and persistent torrential rains in June 2005(b)(the thick line denotes the trongh)

    Fig. 4  Latitude-time cross-section of 500 hPa mean geopotential height (unit: dagpm) and ascending motion from 1 May to 17 May in 2010(a) and 850 hPa mean horizontal wind (vector) and 500 hPa ascending motion from 9 Jun to 28 Jun in 2005(b) for 112°—116°E (shaded areas represent the significant upward motion, unit: 10-2Pa·s-1)

    Fig. 5  Schematic diagram of weather pattern of heavy rain processes on 7 May (a), 9 May (b) and 14 May (c) in 2010 (shaded areas represent the heavy rain area)

    Fig. 6  Time series of zonal averaged (from 107° to 117°E) 500 hPa ωφ(unit:10-2Pa·s-1) in Guangdong consecutive torrential rains during 1—12 May 2010

    (a) observed, (b) simulated, (c) effect of latent heating, (d) effect of horizontal temperature advection

    Fig. 7  Latitude-time cross-section along 113°E of 850 hPa water vapor flux (vector, unit: g·cm-1·hPa-1·s-1) and 925 hPa meridional wind component (shaded) in Guangdong consecutive torrential rains during 1—17 May 2010

    Fig. 8  Height-latitude cross-sections of pseudo-equivalent potential temperature (contour, unit: K) and vertical circulation (vector) along 113°E (shaded areas represent pseudo-equivalent potential temperature less than 340 K) in May 2010

    Fig. 9  Time-lag correlation between total ωψ|500 and ωψ|500 attributed to the main effects (24°N) during 1 May to 17 May in 2010

    (correlation coefficients greater than 0.33 are significant for the 0.01 level)

  • [1]
    陶诗言.中国之暴雨.北京:科学出版社, 1980.
    [2]
    《广东省天气预报技术手册》编写组.广东省天气预报技术手册.北京:气象出版社, 2006:86-149.
    [3]
    丁一汇.暴雨和中尺度气象学问题.气象学报, 1994, 52(3):274-284. doi:  10.11676/qxxb1994.036
    [4]
    《华南前汛期暴雨》编写组.华南前汛期暴雨.广州:广东科技出版社, 1986.
    [5]
    Chen Y L.Some synoptic-scale aspects of the surface front over southern China during TAMEX.Mon Wea Rev, 1993, 121(1), 50-64. doi:  10.1175/1520-0493(1993)121<0050:SSSAOT>2.0.CO;2
    [6]
    薛纪善.1994年华南夏季特大暴雨研究.北京:气象出版社, 1999.
    [7]
    周秀骥, 薛纪善, 陶祖钰, 等.98华南暴雨科学试验研究.北京:气象出版社, 2003:1-370.
    [8]
    Zhang R, Ni Y, Liu L, et al.South China heavy rainfall experiments (SCHeREX).J Meteor Soc Japan, 2011, 89A:153-166. doi:  10.2151/jmsj.2011-A10
    [9]
    李真光, 梁必骐, 包澄澜.华南前汛期暴雨的成因与预报问题//华南前汛期暴雨文集.北京:气象出版社, 1981.
    [10]
    鲍名.两次华南持续性暴雨过程中热带西太平洋对流异常作用的比较.热带气象学报, 2008, 24(1):27-36. http://www.cnki.com.cn/Article/CJFDTOTAL-RDQX200801005.htm
    [11]
    林爱兰, 梁建茵, 李春晖, 等.0506华南持续性暴雨的季风环流背景.水科学进展, 2007, 18(3):424-432. http://www.cnki.com.cn/Article/CJFDTOTAL-SKXJ200703018.htm
    [12]
    林良勋, 吴乃庚, 黄忠, 等.广东2008年罕见"龙舟水"特点及成因诊断分析.气象, 2009, 35(4):43-50. doi:  10.7519/j.issn.1000-0526.2009.04.006
    [13]
    黄忠, 吴乃庚, 冯业荣, 等.2007年6月粤东持续性暴雨的成因分析.气象, 2008, 34(4):53-60. doi:  10.7519/j.issn.1000-0526.2008.04.007
    [14]
    夏茹娣, 赵思雄, 孙建华.一类华南锋前暖区β中尺度系统环境特征的分析研究.大气科学, 2006, 30(5):988-1007. http://www.cnki.com.cn/Article/CJFDTOTAL-DQXK200605025.htm
    [15]
    张晓美, 蒙伟光, 张艳霞, 等.华南暖区暴雨中尺度对流系统的分析.热带气象学报, 2009, 25(5):551-560. http://cdmd.cnki.com.cn/Article/CDMD-85101-2008125890.htm
    [16]
    孙健, 赵平, 周秀骥.一次华南暴雨的中尺度结构及复杂地形的影响.气象学报, 2002, 60(3):333-342. doi:  10.11676/qxxb2002.040
    [17]
    朱本璐, 林万涛, 张云.初始扰动对一次华南暴雨预报的影响的研究.大气科学, 2009, 33(6):1333-1347. http://www.cnki.com.cn/Article/CJFDTOTAL-DQXK200906019.htm
    [18]
    张爱华, 吴恒强, 覃武.南半球大气环流对华南前汛期降雨影响初探.气象, 2006, 32(8):10-15. http://www.cnki.com.cn/Article/CJFDTOTAL-QXXX708.002.htm
    [19]
    赵玉春, 李泽椿, 肖子牛.南半球冷空气爆发对华南连续性暴雨影响的个例分析.气象, 2007, 33(3):40-47. doi:  10.7519/j.issn.1000-0526.2007.03.006
    [20]
    池艳珍, 何金海, 吴志伟.华南前汛期不同降水时段的特征分析.南京气象学院学报, 2005, 28(2):163-171. http://www.cnki.com.cn/Article/CJFDTOTAL-NJQX200502002.htm
    [21]
    郑彬, 梁建茵, 林爱兰, 等.华南前汛期的锋面降水和夏季风降水.大气科学, 2006, 30(6):1207-1216. http://www.cnki.com.cn/Article/CJFDTOTAL-DQXK200606014.htm
    [22]
    谢炯光, 古德军, 纪忠萍, 等.广东省6月长连续暴雨过程的气候特征及成因.应用气象学报, 2012, 23(2):172-183. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20120206&flag=1
    [23]
    何立富, 周庆亮, 陈涛, 等."05.6"华南暴雨中低纬度系统活动及相互作用.应用气象学报, 2010, 21(4):385-394. doi:  10.11898/1001-7313.20100401
    [24]
    练江帆, 梁必骐."94.6"与"94.7"华南致洪暴雨的对比分析.中山大学学报:自然科学版, 1999, 38(4):102-106. http://www.cnki.com.cn/Article/CJFDTOTAL-ZSDZ904.022.htm
    [25]
    袁卓建, 王同美.局地经向环流的诊断方程.东亚季风和中国暴雨.北京:气象出版社, 1998:496-505.
    [26]
    Yuan Zhuojian, Wang Tongmei, He Haiyan, et al.A comparison between numerical simulation of forced local Hadley (anti-Hadley) circulation in east Asia and Indian monsoon regions.Adv Atmos Sci, 2000, 17(4):538-54. doi:  10.1007/s00376-000-0017-6
    [27]
    陈桂兴, 林良勋, 冯业荣, 等.数值剖析0411号热带气旋位置不连续变化和强度突变.气象学报, 2006, 65(4):588-599. http://www.cnki.com.cn/Article/CJFDTOTAL-QXXB200704011.htm
    [28]
    温之平, 吴乃庚, 冯业荣, 等.定量诊断华南春旱的形成机理.大气科学, 2007, 31(6):1223-1236. http://www.cnki.com.cn/Article/CJFDTOTAL-DQXK200706018.htm
    [29]
    吴国雄, 蔡雅萍, 唐晓箐.湿位涡和倾斜涡度发展.气象学报, 1995, 53(4):387-405. doi:  10.11676/qxxb1995.045
    [30]
    刘会荣, 李崇银.干侵入对济南"7.18"暴雨的作用.大气科学, 2010, 34(2):374-386. http://www.cnki.com.cn/Article/CJFDTOTAL-DQXK201002012.htm
    [31]
    钱传海, 张金艳, 应冬梅, 等.2003年4月江西一次强对流天气过程的诊断分析.应用气象学报, 2007, 18(4):460-467. doi:  10.11898/1001-7313.20070406
    [32]
    Uccellini L W, Johnson D R.The coupling of upper and lower tropospheric jet streaks and implication for the development of severe convective storms.Mon Wea Rev, 1979, 107, 6:682-703. doi:  10.1175/1520-0493(1979)107<0682:TCOUAL>2.0.CO;2
  • 加载中
  • -->

Catalog

    Figures(9)

    Article views (3354) PDF downloads(1498) Cited by()
    • Received : 2012-04-22
    • Accepted : 2012-12-20
    • Published : 2013-04-30

    /

    DownLoad:  Full-Size Img  PowerPoint