Guo Xiufeng, Tan Yongbo, Guo Fengxia, et al. Numerical simulation of effects of building tip on atmospheric electric field distortion. J Appl Meteor Sci, 2013, 24(2): 189-196.
Citation: Guo Xiufeng, Tan Yongbo, Guo Fengxia, et al. Numerical simulation of effects of building tip on atmospheric electric field distortion. J Appl Meteor Sci, 2013, 24(2): 189-196.

Numerical Simulation of Effects of Building Tip on Atmospheric Electric Field Distortion

  • Received Date: 2012-05-24
  • Rev Recd Date: 2013-01-10
  • Publish Date: 2013-04-30
  • The effects of building tip on atmospheric electric field distortion are an important part of atmospheric electricity, especially in the research of corona layer above the inhomogeneous underlying surface, upward lightning leader and even upward lightning initiated from tall building, and also an influencing factor in lightning protection. For the account that the existing measurements are ineffectual in measuring the electric intensity above the tip, numerical simulation becomes very helpful.Assuming the building to be an ideal conductor and fully connected with earth and the potential is 0, which satisfies the Dirichlet boundary condition; three other air boundaries all satisfying Numann boundary condition and the electric potential gradient on these boundaries are constants. A two-dimensional finite difference method of calculation is used to obtain the potential distribution around the building and electric intensity near the tip in further. What's more, the two-dimensional finite difference equation is solved by successive over-relaxation method.The effects on the atmospheric electric field distortion by the height, width and location of building's tip are discussed, respectively. The result shows that λi (maximum distort coefficient of electric field) is linearly increasing with height and the slope of linear equation is decreasing with width. λi shows symmetrical increasing trend when the tip is located from the center to the each edge on the roof of a structure. It grows evidently with the increasing height of structure. Furthermore, λi is declined exponentially with the tip width, particularly when less than five meters, λi has a sensitive response to width, and the effect on λi by width is more obviously presented with the increasing height. Taking no account of the extinction effect of corona layer, electric field intensification shows much greater on the top when the structure is taller and thinner. In actual problems, the effects on electric field distortion mainly depend on the structure height when the top is flat. But when there is an obvious tip such as lightning conductor and so on, the height, width and location of tip should be taken into consideration.
  • Fig. 1  Building model

    Fig. 2  Plot of equipotentials around building and tip in different heights under the atmospheric electric field (unit:kV)(a) the height of tip is 530 m, (b) the height of tip is 230 m

    Fig. 3  Variation of E/E0 with HT when the structure width are fixed at 100 m, 50 m and 30 m, respectively

    Fig. 4  Plot of equipotentials around building and tip in different widths under the atmospheric electric field (unit:kV)(a) the width of tip is 1 m, (b) the width of tip is 30 m

    Fig. 5  Variation of E/E0 with w when tip on the ground (HT=30 m)

    Fig. 6  Variation of E/E0 with w by buildings with different heights

    Fig. 7  Plot of equipotentials around building and tip in different tip locations under the atmospheric electric field (unit:kV)

    (a) the tip locates at the left edge of the roof, (b) the tip locates at the center of the roof

    Fig. 8  Variation of E/E0 with tip location by buildings with different heights of the structure

    Table  1  The constant values of fitting equation of λi and HT by buildings with different widths

    W/m a b
    30 2.3574 0.097
    50 2.4849 0.092
    100 2.5462 0.090
    DownLoad: Download CSV

    Table  2  The constant values of fitting equation of λi and w by buildings with different heights

    H/m a t b R2
    0 3.10802 4.62834 4.75243 0.988
    100 10.63255 4.54626 12.74505 0.989
    300 25.55048 4.46437 28.78252 0.990
    500 40.37338 3.89759 46.42381 0.995
    DownLoad: Download CSV

    Table  3  The constant values of fitting equation of λi and s by buildings with different heights

    H/m a b c R2
    500 0.00228 -0.22207 78.69342 0.983
    300 0.00137 -0.13339 50.20669 0.982
    DownLoad: Download CSV
  • [1]
    张义军, 周秀骥.雷电研究的回顾和进展.应用气象学报, 2006, 17(6):829-834. doi:  10.11898/1001-7313.20060619
    [2]
    吴亭, 吕伟涛, 刘晓阳, 等.北京地区不同天气条件下近地面大气电场特征.应用气象学报, 2009, 20(4):394-401. doi:  10.11898/1001-7313.20090402
    [3]
    张义军, 孟青, 马明, 等.闪电探测技术发展和资料应用.应用气象学报, 2006, 17(5):611-620. doi:  10.11898/1001-7313.20060504
    [4]
    Soula S, Chauzy S.Multilevel measurement of the electric field underneath a thundercloud:Dynamical evolution of a ground space charge layer.J Geophys Res, 1991, 96(D12):22327-22336. doi:  10.1029/91JD02032
    [5]
    Standler R B, Winn W P.Effects of coronae on electric fields beneath thunderstorms.Meteorol Soc, 1979, 105:258-302. doi:  10.1002/qj.49710544319/full
    [6]
    Hubert P, Laroche P, Eybert-Berart A, et al.Triggered lightning in New Mexico.J Geophys Res, 1984, 89:2511-2521. doi:  10.1029/JD089iD02p02511
    [7]
    Liu X, Wang C, Zhang Y, et al.Experiment of artificial triggering lightning in China.J Geophys Res, 1994, 99:10727-10731. doi:  10.1029/93JD02858
    [8]
    McEachron K B.Lightning to the Empire State Building.J Franklin Inst, 1939, 227:149-217. doi:  10.1016/S0016-0032(39)90397-2
    [9]
    Eriksson A J.Lightning and tall structures.Trans S Afr IEE, 1978, 69:238-252. http://ieeexplore.ieee.org/document/5252721/
    [10]
    Berger K, Vogelsanger E.New Results of Lightning Observations//Planeteary Electrodynamics, 1969:498-510.
    [11]
    Miki M, Rakov V A, Shindo T, et al.Initial stage in lightning initiated from tall objects and in rocket triggered lightning.J Geophys Res, 2005, 110(D02):109, doi: 10.1029/2003JD4474.
    [12]
    Wang D, Takagi N, Watanabe T, et al.Observed characteristics of upward leaders that are initiated from a windmill and its lightning protection tower.J Geophys Res, 2008, 35, L02803, doi:10.1029/2007 GL 032136.
    [13]
    Rakov V A, Uman M A.Lightning:Physics and Effects.New York:Cambridge University Press, 2003.
    [14]
    Don W C, Heinz W K.Triggered Lightning.IEEE Trans Electromagn Compat, 1982, 24:112-122. http://ieeexplore.ieee.org/document/4091536/
    [15]
    D'Alessandro F.The use of "Field Intensification Factors" in calculations for lightning protection of structures.Journal of Electrostatics, 2003, 58:17-43. doi:  10.1016/S0304-3886(02)00178-X
    [16]
    D'Alessandro F.Striking distance factors and practical lightning rod installations:A quantitative study.Journal of Electrostatics, 2003, 59:25-41. doi:  10.1016/S0304-3886(03)00069-X
    [17]
    Bermudez J L, Rachidi F, Rubinstein M, et al.Far-field-current relationship based on the TL model for lightning return strokes to elevated strike objects.IEEE Trans Electromagn Compat, 2005, 47(1):146-159. doi:  10.1109/TEMC.2004.842102
    [18]
    杨波, 周璧华, 高太长.泰山和西双版纳两地雷暴电场特征分析.解放军理工大学学报:自然科学版, 2008, 9(3):302-306. http://www.cnki.com.cn/Article/CJFDTOTAL-JFJL200803020.htm
    [19]
    杨仲江, 朱浩, 唐宏科, 等.地面电场仪测量数据的误差来源及分析处理.大气科学学报, 2010, 33(6):751-756. http://www.cnki.com.cn/Article/CJFDTOTAL-NJQX201006014.htm
    [20]
    周骏驰. 大气电场仪观测结果的修订及应用. 南京: 南京信息工程大学, 2011.
    [21]
    Yoshihiro B, Vladimir A R.Electromagnetic field at the top of a tall building associated with nearby lightning return strokes.IEEE Trans Electromagn Compat, 2007, 49(3):632-643. doi:  10.1109/TEMC.2007.902402
    [22]
    任晓毓, 张义军, 吕伟涛, 等.雷击建筑物的先导连接过程模拟.应用气象学报, 2010, 21(4):450-457. doi:  10.11898/1001-7313.20100408
    [23]
    周璧华, 姜慧, 杨波, 等.地物环境对地面大气电场测量的影响.电波科学学报, 2010, 25(5):839-844. http://www.cnki.com.cn/Article/CJFDTOTAL-DBKX201005005.htm
    [24]
    耿雪莹, 张其林, 刘明远, 等.地面建筑物 (群) 对雷暴云大气电场影响的模拟研究.气象科技, 2012, 40(5):827-833. http://www.cnki.com.cn/Article/CJFDTOTAL-QXKJ201205025.htm
    [25]
    任晓毓, 张义军, 吕伟涛, 等.闪电先导随机模式的建立与应用.应用气象学报, 2011, 22(2):194-202. doi:  10.11898/1001-7313.20110208
    [26]
    吕英华.计算电磁学的数值方法.北京:清华大学出版社, 2006.
    [27]
    郭硕鸿.电动力学.北京:高等教育出版社, 2008.
    [28]
    Kanai Yasushi.Automatic mesh generation for 3D electro-magnetic field analysis by FD-TD method.IEEE Trans Magnetics, 1998, 34(5):3383-3386. doi:  10.1109/20.717796
    [29]
    廖臣, 祝大军, 刘盛纲.五点差分格式求解泊松方程并行算法的研究.电子科技大学学报, 2008, 37(1):81-83. http://www.cnki.com.cn/Article/CJFDTOTAL-DKDX200801025.htm
    [30]
    马东升.数值计算方法.北京:机械工业出版社, 2002.
    [31]
    胡枫, 于福溪.超松弛迭代法中松弛因子ω的选取方法.青海师范大学学报:自然科学版, 2006(1):42-45. http://www.cnki.com.cn/Article/CJFDTotal-QHSD200601012.htm
    [32]
    Becerra M, Cooray V, Hartono Z A.Identification of lightning vulnerability points on complex grounded structures.Journal of Electrostatics, 2007, 65:562-570. doi:  10.1016/j.elstat.2006.12.003
    [33]
    刘克哲, 张承琚.物理学.北京:高等教育出版社, 2005.
    [34]
    郭立新, 李江挺, 韩旭彪.计算物理学.西安:西安电子科技大学出版社, 2009.
  • 加载中
  • -->

Catalog

    Figures(8)  / Tables(3)

    Article views (3922) PDF downloads(1455) Cited by()
    • Received : 2012-05-24
    • Accepted : 2013-01-10
    • Published : 2013-04-30

    /

    DownLoad:  Full-Size Img  PowerPoint