Zhang Tengfei, Yin Liyun, Zhang Jie, et al. Evolutions and cloud-to-ground lightning features of two mesoscale convective thunder storm systems in Yunnan. J Appl Meteor Sci, 2013, 24(2): 207-218.
Citation: Zhang Tengfei, Yin Liyun, Zhang Jie, et al. Evolutions and cloud-to-ground lightning features of two mesoscale convective thunder storm systems in Yunnan. J Appl Meteor Sci, 2013, 24(2): 207-218.

Evolutions and Cloud-to-ground Lightning Features of Two Mesoscale Convective Thunder Storm Systems in Yunnan

  • Received Date: 2012-05-12
  • Rev Recd Date: 2012-12-27
  • Publish Date: 2013-04-30
  • The circulation background of mesoscale convective thunderstorm system is diagnostically analyzed from 21 September to 23 September in 2010 by NCEP/NCAR data, and the evolutions and cloud-to-ground lightning activity features of two mesoscale convective thunderstorm systems are analyzed by synchronous stack of lightning detection system observations and FY-2E satellite images. Results show that the advantageous circulation background conditions of high energy, high humidity, and lifting dynamism are also supplied for the mesoscale convective thunderstorm systems by the weakened thermal depression. Mesoscale arc convective cloud belts appears first, on which partial convective cloud clusters gradually develop to mesoscale storm cloud clusters and then run into mesoscale convective storm complexes moving to the west along the same route, leading to strong thunderstorm weather and frequent CG lightning activities on the way.The negative cloud-to-ground (negative CG) lightning is predominant compared to the positive cloud-to-ground (positive CG) lightning during the whole lifetime of a thunder cloud cluster. But not only the storm cloud cluster contracture and the CG lightning activity feature change with time, but also positive CG and negative CG lightning frequency is well related to the cloud top temperature, which is related to the three-negative-polar structure of thunder cloud over the lower latitude plateau of China. When the cloud top temperature TBB descends and TBB isoline density increases, the thunder cloud cluster develops gradually, the low TBB center locates to its foreside, and the negative CG lightning frequency leaps. When the TBB descends to the minimum, the thunder cloud cluster develops to the maturation, negative CG lightning frequency gets to an apex, and positive CG lightning begin to take place. When the TBB ascends and TBB isoline density decreases, the thunder cloud cluster weakens gradually, the low TBB center closes up its center, the negative CG lightning frequency decreases rapidly, and positive CG lightning frequency increases to the apex gradually. In the meantime when TBB of a thunder cloud cluster is lower, convective development is stronger and CG lightning activity is more furious.The storm cloud cluster contracture and the CG lightning spatial distribution are asymmetric. In its foreside TBB is lower and the TBB isoline density and grads are bigger than those in its rearward. Negative CG lightning mainly cluster in its foreside with big TBB grads and within the low center where TBB is no higher than-56℃, while sparse positive CG lightning usually disperse within the low center when TBB is no higher than-56℃, namely taking place in the rearward of dense negative CG lightning. The activity of positive CG and negative CG lightning are negatively correlated. Positive CG lightning hardly takes place during the negative CG rapid incremental phase, it usually begins during the negative CG lightning mild phase, and it increases when negative CG lightning weaken. So negative CG lightning is the result of storm cloud cluster development and positive CG lightning is the result of storm cloud cluster developing to mature.
  • Fig. 1  Cloud-to-ground lightning spatial distribution from 0800 BT 21 Sep to 0800 BT 22 Sep (a) and from 0800 BT 22 Sep to 0800 BT 23 Sep (b) in 2010

    Fig. 2  700 hPa circulation pattern (isoline, unit:gpm) and wind field (vector) at 1400 BT 21 Sep (a) and 1400 BT 22 Sep (b) in 2010

    Fig. 3  Satellite infrared cloud image (unit of TBB:℃) stacked with lightning before 30 min for thunderstorm cloud cluster A on 21 Sep 2010 (blue "+" and red "-" represent positive and negative cloud-to-ground lightning, respectively)

    (a)1700 BT, (b)1800 BT, (c)1900 BT, (d)2000 BT, (e)2130 BT, (f)2230 BT

    Fig. 4  Satellite infrared cloud image (unit of TBB:℃) stacked with lightning before 30 min for thunderstorm cloud cluster B on 22 Sep 2010 (blue "+" and red "-" represent positive and negative clound-to-ground lightning, respectively)

    (a)1600 BT, (b)1730 BT, (c)1930 BT, (d)2030 BT, (e)2130 BT, (f)2230 BT

    Fig. 5  Distribution of TBB no higher than-20℃(unit:℃; the interval is 4℃; -32℃, -52℃ are thick lines) of thunderstorm cloud cluster A stacked with lightning before 30 min on 21 Sep 2010

    (a)1800 BT, (b)2000 BT, (c)2100 BT, (d)2300 BT

    Fig. 6  TBB no higher than-20℃ isoline distribution (unit:℃; the interval is 4℃; -32℃, -52℃ are thick lines) of thunderstorm cloud cluster B stacked with lightning before 30 min on 22 Sep 2010

    (blue "+" and red "-" represent positive and negative cloud-to-ground lightning, respectively) (a)2000 BT, (b)2100 BT, (c)2200 BT, (d)2300 BT

    Fig. 7  Time evolution of total, negative and positive cloud-to-ground lightning frequency, and TBB for thunderstorm cloud cluster A (a) and cluster B (b)

  • [1]
    张义军, 孟青, 马明, 等.闪电探测技术发展和资料应用.应用气象学报, 2006, 17(5):611-620. doi:  10.11898/1001-7313.20060504
    [2]
    张腾飞, 段旭, 张杰, 等.云南强对流暴雨的闪电和雷达回波特征及相关性.热带气象学报, 2010, 27(3):379-386. http://www.cnki.com.cn/Article/CJFDTOTAL-RDQX201103011.htm
    [3]
    张腾飞, 张杰, 郭荣芬.一条中尺度雨带的多普勒雷达回波特征及环境条件分析.应用气象学报, 2005, 16(1):70-77. doi:  10.11898/1001-7313.20050109
    [4]
    Rutledge S A, Lu C, MacGorman D R. Positive cloud-to-ground lightning in mesoscale convective system.J Atmos Sci, 1990, 47:1085-2100. http://adsabs.harvard.edu/abs/1990JAtS...47.2085R
    [5]
    Holle R L, Watson A L, Lopez R E, et a1.The life cycle of lightning and severe weather in a 3—4 June 1985 PRE-STORM mesoseale convective system.Mon Wea Rev, 1994, l22:1798-1808. http://adsabs.harvard.edu/abs/1994MWRv..122.1798H
    [6]
    Qie Xiushu, Yan Muhong, Guo Changming, et a1.Lightningdata and study of thunderstorm noweasting.Acta Meteor Sinica, 1993, 7:244-256. http://www.cnki.com.cn/Article/CJFDTotal-QXXW199302012.htm
    [7]
    蒙伟光, 易燕明, 杨兆礼, 等.广州地区雷暴过程云-地闪特征及其环境条件.应用气象学报, 2008, 19(5):611-619. doi:  10.11898/1001-7313.20080513
    [8]
    袁铁, 郄秀书.基于TRMM卫星对一次华南飑线的闪电活动及其与降水结构的关系研究.大气科学, 2010, 34(1):58-70. http://www.cnki.com.cn/Article/CJFDTOTAL-DQXK201001006.htm
    [9]
    冯桂力, 郄秀书, 袁铁, 等.一次冷涡天气系统中雹暴过程的地闪特征分析.气象学报, 2006, 64(2):211-220. doi:  10.11676/qxxb2006.021
    [10]
    刘冬霞, 郄秀书, 冯桂力.华北一次中尺度对流系统中的闪电活动特征及其与雷暴动力过程的关系研究.大气科学, 2010, 34(1):95-104. http://www.cnki.com.cn/Article/CJFDTOTAL-DQXK201001009.htm
    [11]
    冯桂力, 郄秀书, 周筠珺.一次中尺度对流系统的闪电演变特征.高原气象, 2006, 25(2):220-228. http://www.cnki.com.cn/Article/CJFDTOTAL-GYQX200602006.htm
    [12]
    郑栋, 孟青, 吕伟涛, 等.北京及其周边地区夏季地闪活动时空特征分析.应用气象学报, 2005, 16(5):638-644. doi:  10.11898/1001-7313.20050510
    [13]
    郄秀书, Ralf Toumi.卫星观测到的青藏高原雷电活动特征.高原气象, 2003, 22(3):288-294. http://www.cnki.com.cn/Article/CJFDTOTAL-GYQX200303013.htm
    [14]
    戴建华, 秦虹, 郑杰.用TRMM/LIS资料分析长江三角洲地区的闪电活动.应用气象学报, 2005, 16(6):728-736. doi:  10.11898/1001-7313.20050613
    [15]
    王艳, 张义军, 马明.卫星观测的我国近海海域闪电分布特征.应用气象学报, 2010, 21(2):157-163. doi:  10.11898/1001-7313.20100204
    [16]
    张腾飞, 许迎杰, 张杰, 等.云南雷电活动的大气相对湿度诊断特征及响应关系分析.应用气象学报, 2010, 21(2):180-188. doi:  10.11898/1001-7313.20100207
    [17]
    陈渭明.雷电学原理.北京:气象出版社, 2006:79-144.
    [18]
    张义军, 葛正谟, 陈成品, 等.青藏高原东部地区的大气电特征.高原气象, 1998, 17(2):135-141. http://www.cnki.com.cn/Article/CJFDTOTAL-GYQX802.003.htm
    [19]
    Fuquay D M.Positive cloud-to-ground lightning in summer thunderstorm.J Geophys Res, 1982, 87:7131-7140. doi:  10.1029/JC087iC09p07131
    [20]
    Carey L D, Murphy M J, McCormick T L, et al.Lightning location relative to storm structure in a leading-line, trailing-stratiform mesoscale convective system EJ3.J Geophys Res, 2005, 110:D03105, doi: 10.1029/2003JD004371.
    [21]
    Jacobon E A, Krider E P.Electrostatic field changes produced by Florida lightning.J Atmos Sci, 1976, 33:103-117. doi:  10.1175/1520-0469(1976)033<0103:EFCPBF>2.0.CO;2
  • 加载中
  • -->

Catalog

    Figures(7)

    Article views (3370) PDF downloads(1736) Cited by()
    • Received : 2012-05-12
    • Accepted : 2012-12-27
    • Published : 2013-04-30

    /

    DownLoad:  Full-Size Img  PowerPoint