Su Aifang, Sun Jinglan, Gu Xiujie, et al. Characteristics and conceptual models of convective rainstorm clouds in Henan Province. J Appl Meteor Sci, 2013, 24(2): 219-229.
Citation: Su Aifang, Sun Jinglan, Gu Xiujie, et al. Characteristics and conceptual models of convective rainstorm clouds in Henan Province. J Appl Meteor Sci, 2013, 24(2): 219-229.

Characteristics and Conceptual Models of Convective Rainstorm Clouds in Henan Province

  • Received Date: 2012-06-06
  • Rev Recd Date: 2012-12-28
  • Publish Date: 2013-04-30
  • Study on severe weather's conceptual models is important for improving forecasting and early warning capabilities of severe weather. Using FY-2C/E and MODIS satellite data, A0 data, precipitation data of automatic weather stations and conventional observations, meso-scale convective systems criteria of convective rainstorm is revised, and their activity rhythm, as well as rainfall characteristics, are analyzed during convective rainstorm processes. In addition, convective rain storm conceptual models in Henan Province are studied based on analysis of cloud systems and synoptic situations. MCSs of convective rainstorm in Henan Province include newborn convective cloud clusters, MαCS, MβCS and banded MCSs. MCSs with different shape and scale have different characteristics of precipitation. Newborn convective clusters are easy to produce 20—29.9 mm·h-1 rain intensity. The probability of exceeding 30.0—49.9 mm·h-1 rain intensity brought by MβCS is obviously greater. The rain intensity exceeding 30.0 mm·h-1 is most likely caused by MαCS, but banded convective systems have higher probability of exceeding 50.0 mm·h-1 rain intensity than MαCS. However, each type of MCS can form strong intensity of rainfall over 80 mm·h-1 and the strongest intensity of rainfall is made by MβCS. The spatial and temporal variations and morphological characteristics of MCSs can give important information for forecasting thunder-rainstorm, and thunder-rainstorm is easy to occur during the formation and development of MCSs, and in the regions with big gradient of TBB in the back and the center of MCSs. Regions with high cloud optical thickness are potential areas of thunder-rainstorm. Dry and cold air masses in the processes of trough (vortex)-shear and trough's style play an important triggering role of MCSs. In the processes of high pressure's rear, MCSs are closely related to increasing temperature by radiation in boundary layer. Furthermore, energy front and convergence lines in boundary are the trigging systems. Dry lines in the shear line's processes are very important. Formation and development information of MCSs may be dependent on optical thickness. What's more, in the processes of high pressure's rear, the north of dark area on vapor images is easy to bring about MCSs. There are five potential regions of convective rainstorm in Henan Province, and four regions of them are near mountains. The routes of MCSs include eastward, northeastward and southeastward paths. Cloud track wind on high level can provide forecasting information of MCSs.
  • Fig. 1  Distribution of 119 meteorological ground stations in Henan Province

    Fig. 2  Weather system and cloud features during the thunder-rainstorm process on 25 June 2005

    (a) weather system and FY-2C IR image at 2000 BT 25 June 2005, (b) FY-2C IR image and rain intensity (unit:mm·h-1) at 1400 BT 25 June 2005, (c) FY-2C IR images and rain intensity (unit: mm·h-1), (d) FY-2C IR image and rain intensity (unit: mm·h-1) at 0200 BT 26 June 2005, (e) water vapor product of MODIS at 1320 BT 25 June 2005, (f) cloud optical thickness product of MODIS at 1145 BT 25 June 2005

    Fig. 3  Weather system, IR image of FY-2C and cloud optical thickness product of MODIS during the convective-rainstorm process on 31 July 2006

    (a) weather system and IR image, (b) IR image and rain intensity (unit:mm·h-1), (c) cloud optical thickness product of MODIS (area surrounded by white circle represents potential region of developing MCS)

    Fig. 4  Weather systems, FY-2C IR image and water vapor product of MODIS during the convective rainstorm process on 25 August 2007

    (a) weather system and IR image (IR image at 1500 BT; red contours are CAPE, unit: J/kg), (b) water vapor product of MODIS (area surrounded by white circle represents potential region of developing MCS)

    Fig. 5  Weather system, IR image and cloud optical thickness during the convective-rainstorm process on 4 July 2006 (a) weather system and IR image (IR image at 1400 BT; area surrounded by dotted line: K≥32℃), (b) cloud optical thickness of MODIS

    Fig. 6  The typical conceptual model of the convective rainstorm in Henan Province

    (a) trough (vortex)-shear (cold and warm front on ground), (b) trough, (c) high pressure's rear, (d) shear line

    Fig. 7  Typical high-level cloud track wind field and IR image of FY-2C for developing MCS during convective rainstorm process

    (black contours represent TBB no more than 220 K; blue and purple arrows indicate moving direction of MCSs and significant airflow direction of high-level cloud track wind, respectively) (a) airflow diversion area, (b) southwest wind divergence area, (c) anticyclonic circulation at the top

    Fig. 8  Development regions and movement paths of MCS during convective rainstorms in Henan Province

    (bottom picture shows the topography and warm colors on behalf of the mountains; development regions of MCS are gray shaded; path frequency no less than 30% and less than 10% are represented by thick and thin arrows)

    Table  1  Criteria for MCS of thunder-rainstorm in Henan Province

    名称 尺度特征 冷云罩强度中心 发展趋势
    新生对流云团 最大冷云罩长轴小于100 km 只有1个TBB低值中心,中心值
    大小不一,一般不超过-32℃
    满足尺度特征的时间低于3 h,消亡
    或继续发展,或与其他MCS合并
    MβCS 最大冷云罩短轴为100~200 km
    之间,偏心率不小于0.5
    1~2个TBB低值中心,中心值较
    低,不超过-52℃
    满足尺度特征的时间1~3 h, 减弱、
    移出河南或继续发展、合并为MαCS
    MαCS 最大冷云罩短轴大于200 km,偏
    心率不小于0.5
    1个或1个以上TBB低值中心,
    中心值不超过-52℃
    满足尺度特征的时间不低于
    3 h,减弱或东移出河南省
    带状MCS 不低于-40℃冷云罩呈带状分布,
    长轴不小于300 km,长短轴比不小于5:1
    多个TBB低值中心,中心值
    一般不超过-52℃
    满足尺度特征的时间约2~6 h,
    东或南移出河南省
    DownLoad: Download CSV

    Table  2  Characteristics of typical MCS rainfall intensity

    种类 短时强降水
    累计次数
    不同雨强出现概率/% 极大雨强
    /(mm·h-1)
    20.0~29.9 mm·h-1 30.0~49.9 mm·h-1 ≥50.0 mm·h-1
    新生对流云团 105 60 30 10 83.0
    MβCS 127 52 37 11 92.0
    MαCS 175 35 50 15 82.0
    带状MCS 68 41 43 16 76.0
    DownLoad: Download CSV
  • [1]
    陶祖钰, 王洪庆, 王旭, 等.1995年中国的中-α尺度对流系统.气象学报, 1998, 56(2):166-177. doi:  10.11676/qxxb1998.016
    [2]
    郑永光, 朱佩君, 陈敏, 等.1993—1996黄海及其周边地区MαCS的普查分析.北京大学学报:自然科学版, 2004, 40:66-72. http://www.cnki.com.cn/Article/CJFDTOTAL-BJDZ200401009.htm
    [3]
    马禹, 王旭, 陶祖钰.中国及其邻近地区中尺度对流系统的普查和时空分布特征.自然科学进展, 1997, 7(6):701-706. http://www.cnki.com.cn/Article/CJFDTOTAL-ZKJZ199706009.htm
    [4]
    段旭, 张秀年, 许美玲.云南及其周边地区中尺度对流系统时空分布特征.气象学报, 2004, 26(2):243-249. doi:  10.11676/qxxb2004.025
    [5]
    费增坪, 郑永光, 王洪庆.2003年淮河大水期间MCS的普查分析.气象, 2005, 31(12):18-22. doi:  10.7519/j.issn.1000-0526.2005.12.003
    [6]
    袁美英, 李泽春, 张小玲, 等.中尺度对流系统与东北暴雨的关系.高原气象, 2011, 30(5):1224-1231. http://www.cnki.com.cn/Article/CJFDTOTAL-GYQX201105009.htm
    [7]
    何立富, 陈涛, 谌芸, 等.大气探测资料在中尺度暴雨中的分析和应用.应用气象学报, 2006, 17(增刊):88-97. http://www.cnki.com.cn/Article/CJFDTotal-YYQX2006S1012.htm
    [8]
    方宗义, 项续康, 方翔, 等.2003年7月3日梅雨锋切变线上的β-中尺度暴雨云团分析.应用气象学院, 2005, 16(5): 569-575. http://www.cnki.com.cn/Article/CJFDTOTAL-YYQX200505001.htm
    [9]
    覃丹宇, 方宗义, 江吉喜.典型梅雨暴雨系统的云系及其相互作用.大气科学, 2006, 30(4):578-586. http://www.cnki.com.cn/Article/CJFDTOTAL-DQXK200604003.htm
    [10]
    江吉喜.华北两类灾害性云团的对比研究.应用气象学报, 1999, 10(2):199-206. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=19990252&flag=1
    [11]
    陈明轩, 俞小鼎, 谭晓光, 等.对流天气临近预报技术的发展与研究进展.应用气象学报, 2004, 15(6):754-766. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20040693&flag=1
    [12]
    邓秋华, 张敬业.区域灾害性暴雨临近预报的云团概念模型.南京气象学院学报, 1990, 13(4):561-567. http://www.cnki.com.cn/Article/CJFDTOTAL-NJQX199004015.htm
    [13]
    徐双柱, 吴翠红.武汉市城区暴雨的卫星云图和雷达回波研究及其概念模型.华中师范大学学报, 1998, 32(2):229-234. http://www.cnki.com.cn/Article/CJFDTOTAL-HZSZ802.024.htm
    [14]
    韦惠红, 赵玉春, 龙利民, 等.湖北省卫星云图短时暴雨概念模型研究.暴雨灾害, 2010, 29(1): 14-19. http://www.cnki.com.cn/Article/CJFDTOTAL-HBQX201001004.htm
    [15]
    Maddox R A.Mesoscale convective complexes.Bull Amer Meteor Soc, 1980, 61(11):1374-1387. doi:  10.1175/1520-0477(1980)061<1374:MCC>2.0.CO;2
    [16]
    Orlanski L A.A rational subdivision of scales for atmospheric processes.Bull Amer Meteor Soc, 1975, 56(5):527-530. http://geomorphometry.org/content/rational-subdivision-scales-atmospheric-processes
    [17]
    王迎春, 钱婷婷, 郑永光, 等.对引发密云泥石流的局地暴雨的分析和诊断.应用气象学报, 2003, 14(3):277-286. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20030335&flag=1
  • 加载中
  • -->

Catalog

    Figures(8)  / Tables(2)

    Article views (3485) PDF downloads(1665) Cited by()
    • Received : 2012-06-06
    • Accepted : 2012-12-28
    • Published : 2013-04-30

    /

    DownLoad:  Full-Size Img  PowerPoint